Skip to content
This repository has been archived by the owner on Mar 11, 2022. It is now read-only.

elyra-ai/airflow-notebook

Repository files navigation

March 2022: This repository is no longer maintained

The code for this project was merged into the https://github.com/elyra-ai/elyra repository.


airflow-notebook implements an Apache Airflow operator NotebookOp that supports running of notebooks and Python scripts in DAGs. To use the operator, configure Airflow to use the Elyra-enabled container image or install this package on the host(s) where the Apache Airflow webserver, scheduler, and workers are running.

Using the Elyra-enabled airflow container image

Follow the instructions in this document.

Installing the airflow-notebook package

You can install the airflow-notebook package from PyPI or source code.

Installing from PyPI

To install airflow-notebook from PyPI:

pip install airflow-notebook

Installing from source code

To build airflow-notebook from source, Python 3.6 (or later) must be installed.

git clone https://github.com/elyra-ai/airflow-notebook.git
cd airflow-notebook
make clean install

Test coverage

The operator was tested with Apache Airflow v1.10.12.

Usage

Example below on how to use the airflow operator. This particular DAG was generated with a jinja template in Elyra's pipeline editor.

from airflow import DAG
from airflow_notebook.pipeline import NotebookOp
from airflow.utils.dates import days_ago

# Setup default args with older date to automatically trigger when uploaded
args = {
    'project_id': 'untitled-0105163134',
}

dag = DAG(
    'untitled-0105163134',
    default_args=args,
    schedule_interval=None,
    start_date=days_ago(1),
    description='Created with Elyra 2.0.0.dev0 pipeline editor using untitled.pipeline.',
    is_paused_upon_creation=False,
)


notebook_op_6055fdfb_908c_43c1_a536_637205009c79 = NotebookOp(name='notebookA',
                                                              namespace='default',
                                                              task_id='notebookA',
                                                              notebook='notebookA.ipynb',
                                                              cos_endpoint='http://endpoint.com:31671',
                                                              cos_bucket='test',
                                                              cos_directory='untitled-0105163134',
                                                              cos_dependencies_archive='notebookA-6055fdfb-908c-43c1-a536-637205009c79.tar.gz',
                                                              pipeline_outputs=[
                                                                  'subdir/A.txt'],
                                                              pipeline_inputs=[],
                                                              image='tensorflow/tensorflow:2.3.0',
                                                              in_cluster=True,
                                                              env_vars={'AWS_ACCESS_KEY_ID': 'a_key',
                                                                        'AWS_SECRET_ACCESS_KEY': 'a_secret_key', 'ELYRA_ENABLE_PIPELINE_INFO': 'True'},
                                                              config_file="None",
                                                              dag=dag,
                                                              )


notebook_op_074355ce_2119_4190_8cde_892a4bc57bab = NotebookOp(name='notebookB',
                                                              namespace='default',
                                                              task_id='notebookB',
                                                              notebook='notebookB.ipynb',
                                                              cos_endpoint='http://endpoint.com:31671',
                                                              cos_bucket='test',
                                                              cos_directory='untitled-0105163134',
                                                              cos_dependencies_archive='notebookB-074355ce-2119-4190-8cde-892a4bc57bab.tar.gz',
                                                              pipeline_outputs=[
                                                                  'B.txt'],
                                                              pipeline_inputs=[
                                                                  'subdir/A.txt'],
                                                              image='elyra/tensorflow:1.15.2-py3',
                                                              in_cluster=True,
                                                              env_vars={'AWS_ACCESS_KEY_ID': 'a_key',
                                                                        'AWS_SECRET_ACCESS_KEY': 'a_secret_key', 'ELYRA_ENABLE_PIPELINE_INFO': 'True'},
                                                              config_file="None",
                                                              dag=dag,
                                                              )

notebook_op_074355ce_2119_4190_8cde_892a4bc57bab << notebook_op_6055fdfb_908c_43c1_a536_637205009c79


notebook_op_68120415_86c9_4dd9_8bd6_b2f33443fcc7 = NotebookOp(name='notebookC',
                                                              namespace='default',
                                                              task_id='notebookC',
                                                              notebook='notebookC.ipynb',
                                                              cos_endpoint='http://endpoint.com:31671',
                                                              cos_bucket='test',
                                                              cos_directory='untitled-0105163134',
                                                              cos_dependencies_archive='notebookC-68120415-86c9-4dd9-8bd6-b2f33443fcc7.tar.gz',
                                                              pipeline_outputs=[
                                                                  'C.txt', 'C2.txt'],
                                                              pipeline_inputs=[
                                                                  'subdir/A.txt'],
                                                              image='elyra/tensorflow:1.15.2-py3',
                                                              in_cluster=True,
                                                              env_vars={'AWS_ACCESS_KEY_ID': 'a_key',
                                                                        'AWS_SECRET_ACCESS_KEY': 'a_secret_key', 'ELYRA_ENABLE_PIPELINE_INFO': 'True'},
                                                              config_file="None",
                                                              dag=dag,
                                                              )

notebook_op_68120415_86c9_4dd9_8bd6_b2f33443fcc7 << notebook_op_6055fdfb_908c_43c1_a536_637205009c79

Generated Airflow DAG

Airflow DAG Example