Skip to content

Commit

Permalink
Testing Framework for Hull (#875)
Browse files Browse the repository at this point in the history
* Testing Framework for Hull

* Fixed Formatting

* Made Changes Based on the Review

* Fixed Formatting

* Fixed Formatting Using clang-16

* Reduced NumSegs for Sphere to fit within memory

* Reducing NumSegs Further

* Reducing SphereSegs Further

* Fixed Formatting

* Check for Valid Convex Mesh

* Added Check for Valid Convex Hull, and two failing cases with reduced points

* Added DISABLED in tests and isMeshConvex check in hull_tests.cpp
  • Loading branch information
Kushal-Shah-03 authored Aug 7, 2024
1 parent 7ad7703 commit 75c340f
Show file tree
Hide file tree
Showing 7 changed files with 673 additions and 2 deletions.
8 changes: 7 additions & 1 deletion extras/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -53,4 +53,10 @@ if(BUILD_TEST_CGAL)
target_link_libraries(perfTestCGAL manifold CGAL::CGAL CGAL::CGAL_Core Boost::thread)
target_compile_options(perfTestCGAL PRIVATE ${MANIFOLD_FLAGS})
target_compile_features(perfTestCGAL PUBLIC cxx_std_17)
endif()

add_executable(testHullPerformance test_hull_performance.cpp)
target_compile_definitions(testHullPerformance PRIVATE CGAL_USE_GMPXX)
target_link_libraries(testHullPerformance manifold meshIO samples CGAL::CGAL CGAL::CGAL_Core Boost::thread)
target_compile_options(testHullPerformance PRIVATE ${MANIFOLD_FLAGS})
target_compile_features(testHullPerformance PUBLIC cxx_std_17)
endif()
Binary file added extras/Thingi10K/raw_meshes/233198.stl
Binary file not shown.
242 changes: 242 additions & 0 deletions extras/merge_and_stats.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
import pandas as pd


# MERGING THE DATA


filenames=[]
# merged_data = {}
def parse_csv_and_merge(csv_files, output_file='merged_data.csv'):
"""
Merges CSV files, handling multiline entries and various error conditions.
Args:
csv_files (list): List of tuples containing (filename, implementation_name).
output_file (str, optional): Name of the output CSV file. Defaults to 'merged_data.csv'.
"""

# merged_data = pd.DataFrame(columns=['Filename'])
merged_data={}
is_multiline = False
multiline_data = []
curr_file=""
for file, implementation in csv_files:
print(f"Starting File : {file}")
try:
df = pd.read_csv(file)
except FileNotFoundError:
print(f"Error: File '{file}' not found. Skipping...")
continue

for i, row in df.iterrows():
if is_multiline:
# Handling multiline entries (Before standard algorithm call)
if 'After standard algorithm call' in row.values[0]:
is_multiline = True
continue
elif row.values[1] == "Error":
row.fillna(0, inplace=True)
row['Status'] = 'Error'
row.values[0]= curr_file
row.values[1] = 0
is_multiline=False
filename = row['Filename']
if filename not in merged_data:
merged_data[filename] = row.to_dict()
else:
for col in df.columns:
if col != 'Filename' and not pd.isna(row[col]):
merged_data[filename][col+"_"+implementation] = row[col]
elif row.values[0] == "Invalid Output by algorithm":
is_multiline = True
continue
else:
is_multiline = False
prev_item=curr_file
filenames.append(curr_file)
temp_item=row.values[0]
temp_len=row.values.size
for i in range(1,temp_len):
# print(temp_item)
temp_item=row.values[i-1]
row.values[i-1]=prev_item
prev_item=temp_item
# print(row)
filename = row['Filename']
if filename not in merged_data:
merged_data[filename] = row.to_dict()
else:
for col in df.columns:
if col != 'Filename' and not pd.isna(row[col]):
merged_data[filename][col+"_"+implementation] = row[col]
else:
# Handling single-line entries or first line of multiline entries
# Checking for timeout or error
if pd.isna(row['VolManifold']):
if (row['VolHull']=="Timeout"):
# if 'Timeout' in row['Status']:
row['VolHull']=0
row['VolManifold'] = 0
row.fillna(0, inplace=True)
row['Status'] = 'Timeout'
elif 'Error' in row['Status']:
row.fillna(0, inplace=True)
row['Status'] = 'Error'
elif (row['VolHull'] == "Error"):
row.fillna(0, inplace=True)
row['Status'] = 'Error'
pass
filename = row['Filename']
if filename not in merged_data:
merged_data[filename] = row.to_dict()
else:
for col in df.columns:
if col != 'Filename' and not pd.isna(row[col]):
merged_data[filename][col+"_"+implementation] = row[col]
continue
# Converting Series to df for renaming columns
if 'Before standard algorithm call' in row.values[1]:
if row.values[2] == "Timeout":
row.fillna(0, inplace=True)
row['Status'] = 'Timeout'
row['VolHull']=0
row['VolManifold'] = 0
filename = row['Filename']
if filename not in merged_data:
merged_data[filename] = row.to_dict()
else:
for col in df.columns:
if col != 'Filename' and not pd.isna(row[col]):
merged_data[filename][col+"_"+implementation] = row[col]
continue
is_multiline = True
curr_file=row.values[0]
else:
if (row['VolManifold']=="timeout: the monitored command dumped core"):
row.fillna(0, inplace=True)
row['VolManifold']=0
row['VolHull'] = 0
row['Status'] = 'Error'
filename = row['Filename']
if filename not in merged_data:
merged_data[filename] = row.to_dict()
else:
# print(merged_data[filename])
for col in df.columns:
if col != 'Filename' and not pd.isna(row[col]):
merged_data[filename][col+"_"+implementation] = row[col]

# multiline_data.append(row.tolist())
# print(merged_data)

if not merged_data:
print("Warning: No valid data found in any CSV files.")
return

# Creating df from the dictionary to store the merged data
merged_data = pd.DataFrame.from_dict(merged_data, orient='index')

merged_data.to_csv(output_file, index=False)

csv_files = [('Hull1.csv','hull1'),('CGAL.csv', 'CGAL')]
parse_csv_and_merge(csv_files)


# NORMALIZE THE DATA


file_path = 'merged_data.csv'
df = pd.read_csv(file_path)

time_columns = [col for col in df.columns if 'Time' in col]
for col in time_columns:
df[col] = df[col].str.replace(' sec', '').astype(float)

# List of base columns to normalize against
base_columns = ['VolManifold', 'VolHull', 'AreaManifold', 'AreaHull', 'ManifoldTri', 'HullTri', 'Time']
# List of suffixes to normalize
suffixes = ['_CGAL']
# for suffix in suffixes :
# For time metric avoiding cases with time less than 0.001 seconds
# df = df[(df['Time'] > 0.001)]
# Normalize the columns and check for zero base values
stl_files_with_diff = []

for base in base_columns:
base_col = base
if base_col in df.columns:
for suffix in suffixes:
col_name = f"{base}{suffix}"
if col_name in df.columns:
# Checking if base column is zero and suffix column is not zero
zero_base_nonzero_suffix = (df[base_col] == 0) & (df[col_name] != 0)
if zero_base_nonzero_suffix.any():
raise ValueError(f"Error: {base_col} is zero while {col_name} is not zero in row(s): {df[zero_base_nonzero_suffix].index.tolist()}")

# Setting col_name column in df to 1 if both are zero
both_zero = (df[base_col] == 0) & (df[col_name] == 0)
df.loc[both_zero, col_name] = 1

# Normalizing the column while handling division by zero
df[col_name] = df[col_name] / df[base_col].replace({0: 1})

df[base_col] = 1.0


df.to_csv('normalized_output.csv', index=False)


# CALCULATE STATISTICS ON NORMALZIED OUTPUT


import pandas as pd

file_path = 'normalized_output.csv'
df = pd.read_csv(file_path)

# Columns for statistics calculation
columns = ['VolHull', 'AreaHull', 'HullTri', 'Time']
# Columns suffixes to use
suffixes = ['', '_CGAL']

# Function to calculate statistics for each base and implementation
def calculate_stats(column, status,suffix):
filtered_df = df[(df['Status'+suffix] == status) & ~df[column].isnull()]
# filtered_df = df[(df['Status'+suffix] == status) & ~df[column].isnull() & (df['Time'+suffix] > 0.001) & (df['Time'] > 0.001)]
success_count = filtered_df.shape[0]

if success_count > 0:
mean_val = filtered_df[column].mean()
median_val = filtered_df[column].median()
mode_val = filtered_df[column].mode().iloc[0] if not filtered_df[column].mode().empty else None
max_val = filtered_df[column].max()
min_val = filtered_df[column].min()
else:
mean_val = median_val = mode_val = max_val = min_val = None

return mean_val, median_val, mode_val, max_val, min_val, success_count

stats_dict = {}

# Calculating stats for each column and their suffixes
for base in columns:
for suffix in suffixes:
col_name = f"{base}{suffix}"
if col_name in df.columns:
mean_val, median_val, mode_val, max_val, min_val, success_count = calculate_stats(col_name, 'Success',suffix)
stats_dict[col_name] = {
'mean': mean_val,
'median': median_val,
'mode': mode_val,
'max': max_val,
'min': min_val,
'Success_Count': success_count
}

# Converting the stats dictionary to a df for better visualization
stats_df = pd.DataFrame(stats_dict).T

stats_df.to_csv('statistics_output.csv')

print("Statistics calculation complete. Output saved to 'statistics_output.csv'.")
print(stats_df)
2 changes: 1 addition & 1 deletion extras/perf_test_cgal.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ typedef CGAL::SM_Vertex_index Vertex;
void manifoldToCGALSurfaceMesh(Manifold &manifold, TriangleMesh &cgalMesh) {
auto maniMesh = manifold.GetMesh();

const int n = maniMesh.vertPos.size();
const size_t n = maniMesh.vertPos.size();
std::vector<Vertex> vertices(n);
for (size_t i = 0; i < n; i++) {
auto &vert = maniMesh.vertPos[i];
Expand Down
41 changes: 41 additions & 0 deletions extras/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
#!/bin/bash

# Go to manifold/extras directory and run the command as `./run.sh {path_to_dataset_folder} {name_of_csv} {implementation(Hull,Hull_CGAL)}`
# example ./run.sh ./Thingi10K/raw_meshes/ Hull4.csv Hull

# Checking if the correct number of arguments is provided
if [ "$#" -ne 3 ]; then
echo "Usage: $0 <input_folder> <output.csv> <Implementation>"
exit 1
fi

EXECUTABLE="../build/extras/testHullPerformance"
INPUT_FOLDER=$1
OUTPUT_CSV=$2
IMPLEMENTATION=$3
TIME_LIMIT=10m # time limit in minutes
RAM_LIMIT=6000 # Memory limit in MB

# Initializing the headers
echo "Filename,VolManifold,VolHull,AreaManifold,AreaHull,ManifoldTri,HullTri,Time,Status," > $OUTPUT_CSV

# Iterate over all files in the input folder
for INPUT_FILE in "$INPUT_FOLDER"/*; do
FILE_NAME=$(basename "$INPUT_FILE")

# Run the EXECUTABLE with the specified argument, time limit, and used to capture the output
OUTPUT=$(ulimit -v $((RAM_LIMIT * 1024)); timeout $TIME_LIMIT $EXECUTABLE "Input" "$IMPLEMENTATION" "0" "$INPUT_FILE" 2>&1)
STATUS=$?

# Checking if the EXECUTABLE timed out
if [ $STATUS -eq 124 ]; then
STATUS="Timeout"
elif [ $STATUS -ne 0 ]; then
STATUS="Error"
else
STATUS="Success"
fi

# Adding the result to the output file
echo "\"$FILE_NAME\",$OUTPUT,\"$STATUS\"" >> $OUTPUT_CSV
done
Loading

0 comments on commit 75c340f

Please sign in to comment.