Skip to content

eewangzx/WirelessMetaTransformer

 
 

Repository files navigation

1 Multimedia Lab, The Chinese University of Hong Kong
2 OpenGVLab,Shanghai AI Laboratory
* Equal Contribution  Corresponding Author  Project Lead 

arXiv website blog-cn Hugging Face Spaces OpenXLab

🌟 Single Foundation Model Supports A Wide Range of Applications

As a foundation model, Meta-Transformer can handle data from 12 modalities, which determines that it can support a wide range of applications. As shown in this figure, Meta-Transformer can provide services for downstream tasks including stock analysis 📈, weather forecasting ☀️ ☔ ☁️ ❄️ ⛄ ⚡, remote sensing 📡, autonomous driving 🚗, social network 🌍, speech recognition 🔉, etc.

Table 1: Meta-Transformer is capable of handling up to 12 modalities, including natural language , RGB images , point clouds , audios , videos , tabular data , graph , time series data , hyper-spectral images , IMU , medical images , and infrared images .

🚩🚩🚩 Shared-Encoder, Unpaired Data, More Modalities

This repository is built to explore the potential and extensibility of transformers for multimodal learning. We utilize the advantages of Transformers to deal with length-variant sequences. Then we propose the Data-to-Sequence tokenization following a meta-scheme, then we apply it to 12 modalities including text, image, point cloud, audio, video, infrared, hyper-spectral, X-Ray, tabular, graph, time-series, and Inertial Measurement Unit (IMU) data.

After obtaining the token sequence, we employ a modality-shared encoder to extract representation across different modalities. With task-specific heads, Meta-Transformer can handle various tasks on the different modalities, such as: classification, detection, and segmentation.

🌟 News

  • 2023.8.17: Release code to directly get embeddings from multiple modalities. We will further release code on utilizing Meta-Transformer for Human-Centric vision tasks ⭐⭐⭐.
  • 2023.8.2: 🎉🎉🎉 The implementation of Meta-Transformer for image, point cloud, graph, tabular, time-series, X-Ray, hyper-spectrum, LiDAR data has been released. We also release a very powerful foundation model for Autonomous Driving 🚀🚀🚀.
  • 2023.7.22: 🌟🌟🌟 Pretrained weights and a usage demo for our Meta-Transformer have been released. Comprehensive documentation and implementation of the image modality are underway and will be released soon. Stay tuned for more exciting updates!⌛⌛⌛
  • 2023.7.21: Paper is released at arxiv, and code will be gradually released.
  • 2023.7.8: Github Repository Initialization.

🔓 Model Zoo

Open-source Modality-Agnostic Models
Model Pretraining Scale #Param Download 国内下载源
Meta-Transformer-B16 LAION-2B Base 85M ckpt ckpt
Meta-Transformer-L14 LAION-2B Large 302M ckpt ckpt
  • Demo of Use for Pretrained Encoder
import torch 
import torch.nn as nn
from timm.models.vision_transformer import Block
from Data2Seq import Data2Seq
video_tokenier = Data2Seq(modality='video',dim=768)
audio_tokenier = Data2Seq(modality='audio',dim=768)
time_series_tokenier = Data2Seq(modality='time-series',dim=768)

features = torch.concat([video_tokenizer(video), audio_tokenizer(audio), time_series_tokenizer(time_data)],dim=1)
# For base-scale encoder:
ckpt = torch.load("Meta-Transformer_base_patch16_encoder.pth")
encoder = nn.Sequential(*[
            Block(
                dim=768,
                num_heads=12,
                mlp_ratio=4.,
                qkv_bias=True,
                norm_layer=nn.LayerNorm,
                act_layer=nn.GELU
            )
            for i in range(12)])
encoder.load_state_dict(ckpt,strict=True)
# For large-scale encoder:
ckpt = torch.load("Meta-Transformer_large_patch14_encoder.pth")
encoder = nn.Sequential(*[
            Block(
                dim=1024,
                num_heads=16,
                mlp_ratio=4.,
                qkv_bias=True,
                norm_layer=nn.LayerNorm,
                act_layer=nn.GELU
            )
            for i in range(24)])
encoder.load_state_dict(ckpt,strict=True)
encoded_features = encoder(features)

🕙 ToDo

  • Meta-Transformer with Large Language Models.
  • Multimodal Joint Training with Meta-Transformer.
  • Support More Modalities and More Tasks.

Contact

🚀🚀🚀 We aspire to shape this repository into a formidable foundation for mainstream AI perception tasks across diverse modalities. Your contributions can play a significant role in this endeavor, and we warmly welcome your participation in our project!

To contact us, never hestitate to send an email to [email protected] ,[email protected], [email protected], or [email protected]!

Citation

If the code and paper help your research, please kindly cite:

@article{zhang2023meta,
  title={Meta-transformer: A unified framework for multimodal learning},
  author={Zhang, Yiyuan and Gong, Kaixiong and Zhang, Kaipeng and Li, Hongsheng and Qiao, Yu and Ouyang, Wanli and Yue, Xiangyu},
  journal={arXiv preprint arXiv:2307.10802},
  year={2023}
}

License

This project is released under the Apache 2.0 license.

Acknowledgement

This code is developed based on excellent open-sourced projects including MMClassification, MMDetection, MMsegmentation, OpenPoints, Time-Series-Library, Graphomer, SpectralFormer, and ViT-Adapter.

About

Wireless Meta-Transformer for Unified Multimodal Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 81.8%
  • Shell 6.7%
  • C++ 6.3%
  • Cuda 5.0%
  • Cython 0.1%
  • C 0.1%