Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Check for influential observations of GLM w/o numeric variables #779

Merged
merged 4 commits into from
Nov 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: performance
Title: Assessment of Regression Models Performance
Version: 0.12.4.7
Version: 0.12.4.8
Authors@R:
c(person(given = "Daniel",
family = "Lüdecke",
Expand Down
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,11 @@

* Increased accuracy for `check_convergence()` for *glmmTMB* models.

## Bug fixes

* `check_outliers()` did not warn that no numeric variables were found when only
the response variable was numeric, but all relevant predictors were not.

# performance 0.12.4

## Changes
Expand Down
50 changes: 20 additions & 30 deletions R/check_outliers.R
Original file line number Diff line number Diff line change
Expand Up @@ -378,42 +378,23 @@ check_outliers.default <- function(x,
# Check args
if (all(method == "all")) {
method <- c(
"zscore_robust",
"iqr",
"ci",
"cook",
"pareto",
"mahalanobis",
"mahalanobis_robust",
"mcd",
"ics",
"optics",
"lof"
"zscore_robust", "iqr", "ci", "cook", "pareto", "mahalanobis",
"mahalanobis_robust", "mcd", "ics", "optics", "lof"
)
}

method <- match.arg(
method,
c(
"zscore",
"zscore_robust",
"iqr",
"ci",
"hdi",
"eti",
"bci",
"cook",
"pareto",
"mahalanobis",
"mahalanobis_robust",
"mcd",
"ics",
"optics",
"lof"
"zscore", "zscore_robust", "iqr", "ci", "hdi", "eti", "bci", "cook",
"pareto", "mahalanobis", "mahalanobis_robust", "mcd", "ics", "optics", "lof"
),
several.ok = TRUE
)

# Get model information
m_info <- insight::model_info(x)

# Get data
my_data <- insight::get_data(x, verbose = FALSE)

Expand All @@ -427,8 +408,17 @@ check_outliers.default <- function(x,
)
}

# Remove non-numerics
my_data <- datawizard::data_select(my_data, select = is.numeric, verbose = FALSE)
# Remove non-numerics, but in case of binomial, only check predictors
if (m_info$is_binomial) {
model_predictors <- unique(insight::find_predictors(x, flatten = TRUE))
} else {
model_predictors <- colnames(my_data)
}
my_data <- datawizard::data_select(
my_data[model_predictors],
select = is.numeric,
verbose = FALSE
)

# check if any data left
if (is.null(my_data) || ncol(my_data) == 0) {
Expand Down Expand Up @@ -468,7 +458,7 @@ check_outliers.default <- function(x,
}

# Cook
if ("cook" %in% method && !insight::model_info(x)$is_bayesian && !inherits(x, "bife")) {
if ("cook" %in% method && !m_info$is_bayesian && !inherits(x, "bife")) {
data_cook <- .check_outliers_cook(
x,
threshold = thresholds$cook
Expand Down Expand Up @@ -508,7 +498,7 @@ check_outliers.default <- function(x,
}

# Pareto
if ("pareto" %in% method && insight::model_info(x)$is_bayesian) {
if ("pareto" %in% method && m_info$is_bayesian) {
data_pareto <- .check_outliers_pareto(
x,
threshold = thresholds$pareto
Expand Down
10 changes: 10 additions & 0 deletions tests/testthat/test-check_outliers.R
Original file line number Diff line number Diff line change
Expand Up @@ -361,6 +361,16 @@ test_that("check_outliers with invald data", {
})


test_that("check_outliers on numeric data only", {
data(mtcars)
# all predictors categorical
mtcars$wt <- as.factor(mtcars$wt)
mtcars$mpg <- as.factor(mtcars$mpg)
model <- glm(vs ~ wt + mpg, data = mtcars, family = "binomial")
expect_error(check_outliers(model), regex = "No numeric")
})


test_that("check_outliers with DHARMa", {
skip_if_not_installed("DHARMa")
mt1 <- mtcars[, c(1, 3, 4)]
Expand Down
Loading