Skip to content

Commit

Permalink
add more r2 to non-mixed glmmTMB (#657)
Browse files Browse the repository at this point in the history
  • Loading branch information
strengejacke authored Nov 23, 2023
1 parent 131e825 commit e53d7f4
Show file tree
Hide file tree
Showing 5 changed files with 89 additions and 23 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: performance
Title: Assessment of Regression Models Performance
Version: 0.10.8.3
Version: 0.10.8.4
Authors@R:
c(person(given = "Daniel",
family = "Lüdecke",
Expand Down
15 changes: 15 additions & 0 deletions R/r2.R
Original file line number Diff line number Diff line change
Expand Up @@ -490,25 +490,40 @@ r2.rlmerMod <- r2.merMod

#' @export
r2.glmmTMB <- function(model, ci = NULL, tolerance = 1e-5, verbose = TRUE, ...) {
# most models are mixed models
if (insight::is_mixed_model(model)) {
return(r2_nakagawa(model, ci = ci, tolerance = tolerance, ...))
} else {
if (!is.null(ci) && !is.na(ci)) {
return(.r2_ci(model, ci = ci, ...))
}
# calculate r2 for non-mixed glmmTMB models here -------------------------
info <- insight::model_info(model, verbose = FALSE)

if (info$is_linear) {
# for linear models, use the manual calculation
out <- .safe(.r2_lm_manual(model))
} else if (info$is_logit && info$is_bernoulli) {
# logistic regression with binary outcome
out <- list(R2_Tjur = r2_tjur(model, model_info = info, ...))
attr(out, "model_type") <- "Logistic"
names(out$R2_Tjur) <- "Tjur's R2"
class(out) <- c("r2_pseudo", class(out))
} else if (info$is_binomial && !info$is_bernoulli) {
# currently, non-bernoulli binomial models are not supported
if (verbose) {
insight::format_warning("Can't calculate accurate R2 for binomial models that are not Bernoulli models.")
}
out <- NULL
} else if ((info$is_poisson && !info$is_zero_inflated) || info$is_exponential) {
# Poisson-regression or Gamma uses Nagelkerke's R2
out <- list(R2_Nagelkerke = r2_nagelkerke(model, ...))
names(out$R2_Nagelkerke) <- "Nagelkerke's R2"
attr(out, "model_type") <- "Generalized Linear"
class(out) <- c("r2_pseudo", class(out))
} else if (info$is_zero_inflated) {
# zero-inflated models use the default method
out <- r2_zeroinflated(model)
} else {
insight::format_error("`r2()` does not support models of class `glmmTMB` without random effects and this link-function.") # nolint
}
Expand Down
3 changes: 2 additions & 1 deletion R/r2_nagelkerke.R
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,8 @@ r2_nagelkerke.glmmTMB <- function(model, verbose = TRUE, ...) {
return(NULL)
}

null_dev <- stats::deviance(insight::null_model(model))
null_mod <- suppressWarnings(insight::null_model(model))
null_dev <- stats::deviance(null_mod)
r2cox <- (1 - exp((dev - null_dev) / insight::n_obs(model, disaggregate = TRUE)))

if (is.na(r2cox) || is.null(r2cox)) {
Expand Down
1 change: 0 additions & 1 deletion R/r2_zeroinflated.R
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,6 @@ r2_zeroinflated <- function(model, method = c("default", "correlation")) {
k <- length(insight::find_parameters(model)[["conditional"]])

y <- insight::get_response(model, verbose = FALSE)
# pred <- stats::predict(model, type = "response")

var_fixed <- sum((stats::fitted(model) - mean(y))^2)
var_resid <- sum(stats::residuals(model, type = "pearson")^2)
Expand Down
91 changes: 71 additions & 20 deletions tests/testthat/test-r2.R
Original file line number Diff line number Diff line change
Expand Up @@ -40,23 +40,74 @@ test_that("r2 glm, ci", {
)
})

test_that("r2 glmmTMB, no ranef", {
skip_if_not_installed("glmmTMB")
data(Owls, package = "glmmTMB")
m <- glmmTMB::glmmTMB(NegPerChick ~ BroodSize + ArrivalTime, data = Owls)
out <- r2(m)
expect_equal(out$R2, 0.05597288, tolerance = 1e-3, ignore_attr = TRUE)
# validate against lm
m2 <- lm(NegPerChick ~ BroodSize + ArrivalTime, data = Owls)
out2 <- r2(m2)
expect_equal(out$R2, out2$R2, tolerance = 1e-3, ignore_attr = TRUE)
# binomial
data(mtcars)
m <- glmmTMB::glmmTMB(am ~ mpg, data = mtcars, family = binomial())
out <- r2(m)
expect_equal(out[[1]], 0.3677326, tolerance = 1e-3, ignore_attr = TRUE)
# validate against glm
m2 <- glm(am ~ mpg, data = mtcars, family = binomial())
out2 <- r2(m2)
expect_equal(out[[1]], out[[1]], tolerance = 1e-3, ignore_attr = TRUE)
})
# glmmTMB, non-mixed --------------------------------------------------------

skip_if_not_installed("withr")
withr::with_environment(
new.env(),
test_that("r2 glmmTMB, no ranef", {
skip_if_not_installed("glmmTMB")
data(Owls, package = "glmmTMB")
# linear ---------------------------------------------------------------
m <- glmmTMB::glmmTMB(NegPerChick ~ BroodSize + ArrivalTime, data = Owls)
out <- r2(m)
expect_equal(out$R2, 0.05597288, tolerance = 1e-3, ignore_attr = TRUE)
# validate against lm
m2 <- lm(NegPerChick ~ BroodSize + ArrivalTime, data = Owls)
out2 <- r2(m2)
expect_equal(out$R2, out2$R2, tolerance = 1e-3, ignore_attr = TRUE)
# binomial -------------------------------------------------------------
data(mtcars)
m <- glmmTMB::glmmTMB(am ~ mpg, data = mtcars, family = binomial())
out <- r2(m)
expect_equal(out[[1]], 0.3677326, tolerance = 1e-3, ignore_attr = TRUE)
# validate against glm
m2 <- glm(am ~ mpg, data = mtcars, family = binomial())
out2 <- r2(m2)
expect_equal(out[[1]], out2[[1]], tolerance = 1e-3, ignore_attr = TRUE)
# poisson --------------------------------------------------------------
d <<- data.frame(
counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12),
outcome = gl(3, 1, 9),
treatment = gl(3, 3)
)
m <- glmmTMB::glmmTMB(counts ~ outcome + treatment, family = poisson(), data = d)
out <- r2(m)
expect_equal(out[[1]], 0.6571698, tolerance = 1e-3, ignore_attr = TRUE)
# validate against glm
m2 <- glm(counts ~ outcome + treatment, family = poisson(), data = d)
out2 <- r2(m2)
expect_equal(out[[1]], out2[[1]], tolerance = 1e-3, ignore_attr = TRUE)
# zero-inflated --------------------------------------------------------------
skip_if_not_installed("pscl")
data(bioChemists, package = "pscl")
m <- glmmTMB::glmmTMB(
art ~ fem + mar + kid5 + ment,
ziformula = ~ kid5 + phd,
family = poisson(),
data = bioChemists
)
out <- r2(m)
expect_equal(out[[1]], 0.1797549, tolerance = 1e-3, ignore_attr = TRUE)
# validate against pscl::zeroinfl
m2 <- pscl::zeroinfl(
art ~ fem + mar + kid5 + ment | kid5 + phd,
data = bioChemists
)
out2 <- r2(m2)
expect_equal(out[[1]], out2[[1]], tolerance = 1e-3, ignore_attr = TRUE)
# Gamma --------------------------------------------------------------
clotting <<- data.frame(
u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),
lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)
)
m <- suppressWarnings(glmmTMB::glmmTMB(lot1 ~ log(u), data = clotting, family = Gamma()))
out <- r2(m)
expect_equal(out[[1]], 0.996103, tolerance = 1e-3, ignore_attr = TRUE)
# validate against glm
m2 <- glm(lot1 ~ log(u), data = clotting, family = Gamma())
out2 <- r2(m2)
expect_equal(out[[1]], out2[[1]], tolerance = 1e-3, ignore_attr = TRUE)
})
)

0 comments on commit e53d7f4

Please sign in to comment.