Skip to content

Commit

Permalink
Merge branch 'main' into vignette
Browse files Browse the repository at this point in the history
  • Loading branch information
strengejacke authored Jul 13, 2024
2 parents a4033ec + 413d85b commit 24dd049
Show file tree
Hide file tree
Showing 100 changed files with 1,025 additions and 400 deletions.
17 changes: 2 additions & 15 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,65 +1,52 @@
# History files
.Rhistory
.Rapp.history

# Session Data files
.RData

# Example code in package build process
*-Ex.R

# Output files from R CMD build
/*.tar.gz

# Output files from R CMD check
/*.Rcheck/
/revdep/
revdep

# RStudio files
.Rproj.user/
*.Rproj

# produced vignettes
vignettes/*.html
vignettes/*.pdf

# OAuth2 token, see https://github.com/hadley/httr/releases/tag/v0.3
.httr-oauth

# knitr and R markdown default cache directories
/*_cache/
/cache/

# Temporary files created by R markdown
*.utf8.md
*.knit.md

# Shiny token, see https://shiny.rstudio.com/articles/shinyapps.html
rsconnect/
inst/doc

=========================
# Operating System Files
# OSX
.DS_Store
.AppleDouble
.LSOverride

# Thumbnails
._*

# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns

# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
.apdisk
.Rprofile
6 changes: 3 additions & 3 deletions CRAN-SUBMISSION
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
Version: 0.11.0
Date: 2024-03-22 21:30:58 UTC
SHA: 051b9bb2b7721c632ce145f85c55aa55c8eebf90
Version: 0.12.0
Date: 2024-06-07 17:11:44 UTC
SHA: cb1c46609c8f943a736f3c76b5cadd4272e7bdf2
26 changes: 13 additions & 13 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Type: Package
Package: performance
Title: Assessment of Regression Models Performance
Version: 0.11.0.5
Authors@R:
Version: 0.12.0.9
Authors@R:
c(person(given = "Daniel",
family = "Lüdecke",
role = c("aut", "cre"),
Expand Down Expand Up @@ -39,18 +39,18 @@ Authors@R:
email = "[email protected]",
comment = c(ORCID = "0000-0003-4315-6788", Twitter = "@rempsyc")),
person(given = "Vincent",
family = "Arel-Bundock",
email = "[email protected]",
family = "Arel-Bundock",
email = "[email protected]",
role = "ctb",
comment = c(ORCID = "0000-0003-2042-7063")),
person(given = "Martin",
family = "Jullum",
role = "rev"),
person(given = "gjo11",
role = "rev"),
person("Etienne",
"Bacher", ,
"[email protected]",
person("Etienne",
"Bacher", ,
"[email protected]",
role = "ctb",
comment = c(ORCID = "0000-0002-9271-5075")))
Maintainer: Daniel Lüdecke <[email protected]>
Expand All @@ -70,7 +70,7 @@ Depends:
R (>= 3.6)
Imports:
bayestestR (>= 0.13.2),
insight (>= 0.19.10),
insight (>= 0.20.2),
datawizard (>= 0.10.0),
stats,
utils
Expand All @@ -93,15 +93,15 @@ Suggests:
DHARMa,
estimatr,
fixest,
flextable,
flextable,
forecast,
ftExtra,
gamm4,
ggplot2,
glmmTMB,
graphics,
Hmisc,
httr,
httr2,
ICS,
ICSOutlier,
ISLR,
Expand All @@ -124,13 +124,14 @@ Suggests:
nonnest2,
ordinal,
parallel,
parameters (>= 0.21.4),
parameters (>= 0.21.6),
patchwork,
pscl,
psych,
quantreg,
qqplotr (>= 0.0.6),
randomForest,
RcppEigen,
rempsyc,
rmarkdown,
rstanarm,
Expand All @@ -145,7 +146,7 @@ Suggests:
withr (>= 3.0.0)
Encoding: UTF-8
Language: en-US
RoxygenNote: 7.3.1
RoxygenNote: 7.3.2
Roxygen: list(markdown = TRUE)
Config/testthat/edition: 3
Config/testthat/parallel: true
Expand All @@ -154,4 +155,3 @@ Config/Needs/website:
r-lib/pkgdown,
easystats/easystatstemplate
Config/rcmdcheck/ignore-inconsequential-notes: true
Remotes: easystats/see
4 changes: 4 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@ S3method(display,test_performance)
S3method(fitted,BFBayesFactor)
S3method(format,compare_performance)
S3method(format,performance_model)
S3method(format,performance_rmse)
S3method(format,test_performance)
S3method(logLik,cpglm)
S3method(logLik,iv_robust)
Expand Down Expand Up @@ -319,6 +320,7 @@ S3method(print,performance_hosmer)
S3method(print,performance_model)
S3method(print,performance_pcp)
S3method(print,performance_pp_check)
S3method(print,performance_rmse)
S3method(print,performance_roc)
S3method(print,performance_score)
S3method(print,performance_simres)
Expand Down Expand Up @@ -451,6 +453,7 @@ S3method(r2_coxsnell,survreg)
S3method(r2_coxsnell,svycoxph)
S3method(r2_coxsnell,truncreg)
S3method(r2_efron,default)
S3method(r2_ferrari,default)
S3method(r2_kullback,default)
S3method(r2_kullback,glm)
S3method(r2_loo_posterior,BFBayesFactor)
Expand Down Expand Up @@ -597,6 +600,7 @@ export(r2)
export(r2_bayes)
export(r2_coxsnell)
export(r2_efron)
export(r2_ferrari)
export(r2_kullback)
export(r2_loo)
export(r2_loo_posterior)
Expand Down
32 changes: 31 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,37 @@
# performance 0.11.1
# performance 0.12.1

## General

* `icc()` and `r2_nakagawa()` get a `null_model` argument. This can be useful
when computing R2 or ICC for mixed models, where the internal computation of
the null model fails, or when you already have fit the null model and want
to save time.

* `icc()` and `r2_nakagawa()` get a `approximation` argument indicating the
approximation method for the distribution-specific (residual) variance. See
Nakagawa et al. 2017 for details.

* `icc()` and `r2_nakagawa()` get a `model_component` argument indicating the
component for zero-inflation or hurdle models.

* `performance_rmse()` (resp. `rmse()`) can now compute analytical and
bootstrapped confidence intervals. The function gains following new arguments:
`ci`, `ci_method` and `iterations`.

* New function `r2_ferrari()` to compute Ferrari & Cribari-Neto's R2 for
generalized linear models, in particular beta-regression.

# performance 0.12.0

## Breaking

* Aliases `posterior_predictive_check()` and `check_posterior_predictions()` for
`check_predictions()` are deprecated.

* Arguments named `group` or `group_by` will be deprecated in a future release.
Please use `by` instead. This affects `check_heterogeneity_bias()` in
*performance*.

## General

* Improved documentation and new vignettes added.
Expand All @@ -15,6 +42,9 @@
the usual style as for other models and no longer returns plots from
`bayesplot::pp_check()`.

* Updated the trained model that is used to prediction distributions in
`check_distribution()`.

## Bug fixes

* `check_model()` now falls back on normal Q-Q plots when a model is not supported
Expand Down
1 change: 0 additions & 1 deletion R/binned_residuals.R
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,6 @@ binned_residuals <- function(model,
iterations = 1000,
verbose = TRUE,
...) {
# match arguments
ci_type <- match.arg(ci_type)
residuals <- match.arg(residuals)

Expand Down
1 change: 0 additions & 1 deletion R/check_autocorrelation.R
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@ check_autocorrelation <- function(x, ...) {
#' @rdname check_autocorrelation
#' @export
check_autocorrelation.default <- function(x, nsim = 1000, ...) {
# check for valid input
.is_model_valid(x)

.residuals <- stats::residuals(x)
Expand Down
2 changes: 1 addition & 1 deletion R/check_clusterstructure.R
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
#' number of square shaped blocks along the diagonal.
#'
#' @param x A data frame.
#' @param standardize Standardize the dataframe before clustering (default).
#' @param standardize Standardize the data frame before clustering (default).
#' @param distance Distance method used. Other methods than "euclidean"
#' (default) are exploratory in the context of clustering tendency. See
#' [stats::dist()] for list of available methods.
Expand Down
1 change: 0 additions & 1 deletion R/check_collinearity.R
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,6 @@ multicollinearity <- check_collinearity
#' @rdname check_collinearity
#' @export
check_collinearity.default <- function(x, ci = 0.95, verbose = TRUE, ...) {
# check for valid input
.is_model_valid(x)
.check_collinearity(x, component = "conditional", ci = ci, verbose = verbose)
}
Expand Down
1 change: 0 additions & 1 deletion R/check_convergence.R
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,6 @@ check_convergence <- function(x, tolerance = 0.001, ...) {

#' @export
check_convergence.default <- function(x, tolerance = 0.001, ...) {
# check for valid input
.is_model_valid(x)
message(sprintf("`check_convergence()` does not work for models of class '%s'.", class(x)[1]))
}
Expand Down
40 changes: 28 additions & 12 deletions R/check_distribution.R
Original file line number Diff line number Diff line change
Expand Up @@ -34,12 +34,11 @@ NULL
#' This function uses an internal random forest model to classify the
#' distribution from a model-family. Currently, following distributions are
#' trained (i.e. results of `check_distribution()` may be one of the
#' following): `"bernoulli"`, `"beta"`, `"beta-binomial"`,
#' `"binomial"`, `"chi"`, `"exponential"`, `"F"`,
#' `"gamma"`, `"lognormal"`, `"normal"`, `"negative
#' binomial"`, `"negative binomial (zero-inflated)"`, `"pareto"`,
#' `"poisson"`, `"poisson (zero-inflated)"`, `"uniform"` and
#' `"weibull"`.
#' following): `"bernoulli"`, `"beta"`, `"beta-binomial"`, `"binomial"`,
#' `"cauchy"`, `"chi"`, `"exponential"`, `"F"`, `"gamma"`, `"half-cauchy"`,
#' `"inverse-gamma"`, `"lognormal"`, `"normal"`, `"negative binomial"`,
#' `"negative binomial (zero-inflated)"`, `"pareto"`, `"poisson"`,
#' `"poisson (zero-inflated)"`, `"tweedie"`, `"uniform"` and `"weibull"`.
#' \cr \cr
#' Note the similarity between certain distributions according to shape, skewness,
#' etc. Thus, the predicted distribution may not be perfectly representing the
Expand Down Expand Up @@ -67,7 +66,6 @@ check_distribution <- function(model) {

#' @export
check_distribution.default <- function(model) {
# check for valid input
.is_model_valid(model)

insight::check_if_installed("randomForest")
Expand Down Expand Up @@ -193,23 +191,40 @@ check_distribution.numeric <- function(model) {
# validation check, remove missings
x <- x[!is.na(x)]

# this might fail, so we wrap in ".safe()"
map_est <- .safe(mean(x) - as.numeric(bayestestR::map_estimate(x, bw = "nrd0")))
mode_value <- NULL
# find mode for integer, or MAP for distributions
if (all(.is_integer(x))) {
mode_value <- datawizard::distribution_mode(x)
} else {
# this might fail, so we wrap in ".safe()"
mode_value <- tryCatch(
as.numeric(bayestestR::map_estimate(x, bw = "nrd0")),
error = function(e) NULL
)
if (is.null(mode_value)) {
mode_value <- tryCatch(
as.numeric(bayestestR::map_estimate(x, bw = "kernel")),
error = function(e) NULL
)
}
}

if (is.null(map_est)) {
map_est <- mean(x) - datawizard::distribution_mode(x)
if (is.null(mode_value)) {
mean_mode_diff <- mean(x) - datawizard::distribution_mode(x)
msg <- "Could not accurately estimate the mode."
if (!is.null(type)) {
msg <- paste(msg, "Predicted distribution of the", type, "may be less accurate.")
}
insight::format_alert(msg)
} else {
mean_mode_diff <- .safe(mean(x) - mode_value)
}

data.frame(
SD = stats::sd(x),
MAD = stats::mad(x, constant = 1),
Mean_Median_Distance = mean(x) - stats::median(x),
Mean_Mode_Distance = map_est,
Mean_Mode_Distance = mean_mode_diff,
SD_MAD_Distance = stats::sd(x) - stats::mad(x, constant = 1),
Var_Mean_Distance = stats::var(x) - mean(x),
Range_SD = diff(range(x)) / stats::sd(x),
Expand All @@ -222,6 +237,7 @@ check_distribution.numeric <- function(model) {
Min = min(x),
Max = max(x),
Proportion_Positive = sum(x >= 0) / length(x),
Proportion_Zero = sum(x == 0) / length(x),
Integer = all(.is_integer(x))
)
}
Expand Down
2 changes: 1 addition & 1 deletion R/check_factorstructure.R
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@
#' exclusion them from the analysis (note that you would need to re-compute the
#' KMO indices as they are dependent on the whole dataset).
#'
#' @param x A dataframe or a correlation matrix. If the latter is passed, `n`
#' @param x A data frame or a correlation matrix. If the latter is passed, `n`
#' must be provided.
#' @param n If a correlation matrix was passed, the number of observations must
#' be specified.
Expand Down
Loading

0 comments on commit 24dd049

Please sign in to comment.