-
-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b373476
commit 0d60d99
Showing
15 changed files
with
563 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
#' @importFrom bayestestR p_direction | ||
#' @export | ||
bayestestR::p_direction | ||
|
||
|
||
#' @title Probability of Direction (pd) | ||
#' @name p_direction.lm | ||
#' | ||
#' @description Compute the **Probability of Direction** (*pd*, also known as | ||
#' the Maximum Probability of Effect - *MPE*). This can be interpreted as the | ||
#' probability that a parameter (described by its full confidence, or | ||
#' "compatibility" interval) is strictly positive or negative (whichever is the | ||
#' most probable). Although differently expressed, this index is fairly similar | ||
#' (i.e., is strongly correlated) to the frequentist *p-value* (see 'Details'). | ||
#' | ||
#' @param x A statistical model. | ||
#' @inheritParams bayestestR::p_direction | ||
#' @inheritParams model_parameters.default | ||
#' @param ... Arguments passed to other methods, e.g. `ci()`. | ||
#' | ||
#' @seealso See also [`equivalence_test()`], [`p_function()`] and | ||
#' [`p_significance()`] for functions related to checking effect existence and | ||
#' significance. | ||
#' | ||
#' @inheritSection bayestestR::p_direction What is the *pd*? | ||
#' | ||
#' @inheritSection bayestestR::p_direction Relationship with the p-value | ||
#' | ||
#' @inheritSection bayestestR::p_direction Possible Range of Values | ||
#' | ||
#' @inheritSection model_parameters Statistical inference - how to quantify evidence | ||
#' | ||
#' @references | ||
#' | ||
#' - Amrhein, V., Korner-Nievergelt, F., and Roth, T. (2017). The earth is | ||
#' flat (p > 0.05): Significance thresholds and the crisis of unreplicable | ||
#' research. PeerJ, 5, e3544. \doi{10.7717/peerj.3544} | ||
#' | ||
#' - Greenland S, Rafi Z, Matthews R, Higgs M. To Aid Scientific Inference, | ||
#' Emphasize Unconditional Compatibility Descriptions of Statistics. (2022) | ||
#' https://arxiv.org/abs/1909.08583v7 (Accessed November 10, 2022) | ||
#' | ||
#' - Lakens, D. (2024). Improving Your Statistical Inferences (Version v1.5.1). | ||
#' Retrieved from https://lakens.github.io/statistical_inferences/. | ||
#' \doi{10.5281/ZENODO.6409077} | ||
#' | ||
#' - Lakens, D., Scheel, A. M., and Isager, P. M. (2018). Equivalence Testing | ||
#' for Psychological Research: A Tutorial. Advances in Methods and Practices | ||
#' in Psychological Science, 1(2), 259–269. \doi{10.1177/2515245918770963} | ||
#' | ||
#' - Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). | ||
#' Indices of Effect Existence and Significance in the Bayesian Framework. | ||
#' Frontiers in Psychology, 10, 2767. \doi{10.3389/fpsyg.2019.02767} | ||
#' | ||
#' - Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical | ||
#' science: replace confidence and significance by compatibility and surprise. | ||
#' BMC Medical Research Methodology (2020) 20:244. | ||
#' | ||
#' - Schweder T. Confidence is epistemic probability for empirical science. | ||
#' Journal of Statistical Planning and Inference (2018) 195:116–125. | ||
#' \doi{10.1016/j.jspi.2017.09.016} | ||
#' | ||
#' - Schweder T, Hjort NL. Frequentist analogues of priors and posteriors. | ||
#' In Stigum, B. (ed.), Econometrics and the Philosophy of Economics: Theory | ||
#' Data Confrontation in Economics, pp. 285-217. Princeton University Press, | ||
#' Princeton, NJ, 2003 | ||
#' | ||
#' - Vos P, Holbert D. Frequentist statistical inference without repeated sampling. | ||
#' Synthese 200, 89 (2022). \doi{10.1007/s11229-022-03560-x} | ||
#' | ||
#' @return A data frame. | ||
#' | ||
#' @examplesIf requireNamespace("bayestestR") && require("see", quietly = TRUE) | ||
#' data(qol_cancer) | ||
#' model <- lm(QoL ~ time + age + education, data = qol_cancer) | ||
#' p_direction(model) | ||
#' | ||
#' result <- p_direction(model) | ||
#' plot(result) | ||
#' @export | ||
p_direction.lm <- function(x, | ||
ci = 0.95, | ||
method = "direct", | ||
null = 0, | ||
...) { | ||
# first, we need CIs | ||
out <- ci(x, ci = ci, ...) | ||
# we now iterate all confidence intervals and create an approximate normal | ||
# distribution that covers the CI-range. | ||
posterior <- as.data.frame(lapply(seq_len(nrow(out)), function(i) { | ||
ci_range <- as.numeric(out[i, c("CI_low", "CI_high")]) | ||
.generate_posterior_from_ci(ci, ci_range) | ||
})) | ||
colnames(posterior) <- out$Parameter | ||
|
||
out$pd <- as.numeric(bayestestR::p_direction( | ||
posterior, | ||
method = method, | ||
null = null, | ||
... | ||
)) | ||
|
||
# check we don't have duplicated columns in "posterior" we need this for | ||
# plotting | ||
if (anyDuplicated(colnames(posterior)) > 0 && !is.null(out$Component)) { | ||
comps <- .rename_values(out$Component, "zero_inflated", "zi") | ||
comps <- .rename_values(comps, "conditional", "cond") | ||
colnames(posterior) <- paste0(out$Parameter, "_", comps) | ||
out$Parameter <- paste0(out$Parameter, "_", comps) | ||
} | ||
|
||
# we need these for plotting | ||
if (!"Effects" %in% colnames(out)) { | ||
out$Effects <- "fixed" | ||
} | ||
if (!"Component" %in% colnames(out)) { | ||
out$Component <- "conditional" | ||
} | ||
|
||
# reorder | ||
out <- out[intersect(c("Parameter", "CI", "CI_low", "CI_high", "pd", "Effects", "Component"), colnames(out))] | ||
|
||
attr(out, "data") <- posterior | ||
attr(out, "null") <- null | ||
class(out) <- c("p_direction_lm", "p_direction", "see_p_direction", "data.frame") | ||
out | ||
} | ||
|
||
|
||
# methods --------------------------------------------------------------------- | ||
|
||
#' @export | ||
print.p_direction_lm <- function(x, digits = 2, p_digits = 3, ...) { | ||
null <- attributes(x)$null | ||
caption <- sprintf( | ||
"Probability of Direction (null: %s)", | ||
insight::format_value(null, digits = digits, protect_integer = TRUE) | ||
) | ||
|
||
# deal with Effects and Component columns | ||
if ("Effects" %in% colnames(x) && insight::n_unique(x$Effects) == 1) { | ||
x$Effects <- NULL | ||
} | ||
if ("Component" %in% colnames(x) && insight::n_unique(x$Component) == 1) { | ||
x$Component <- NULL | ||
} | ||
|
||
x <- insight::format_table(x, digits = digits, p_digits = p_digits) | ||
cat(insight::export_table(x, title = caption, ...)) | ||
} | ||
|
||
|
||
# other classes -------------------------------------------------------------- | ||
|
||
#' @export | ||
p_direction.glm <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.coxph <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.svyglm <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.glmmTMB <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.merMod <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.wbm <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.lme <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.gee <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.gls <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.feis <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.felm <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.mixed <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.hurdle <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.zeroinfl <- p_direction.lm | ||
|
||
#' @export | ||
p_direction.rma <- p_direction.lm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Oops, something went wrong.