learn to use methods for processing unclear response
- Learn the instructions on first-contributions.
- Apply to this repository what you learn there.
plot_binary()
function inviz.plot.binary
module.plot_polynomial()
function inviz.plot.polynomial
module.Polynomial
class innum.polynomial
module.binary()
function indat.clasdata
module.abbr()
function inuse.misc.info
module.
Following are some examples of lumpur.
from lumpur.num.polynomial import Polynomial
p1 = Polynomial([1, 2, 3])
print('y1 =', p1)
p2 = Polynomial([0, -2, 5, 6, 9])
print('y2 =', p2)
p3 = p1 + p2
print('y3 =', p3)
y1 = 1 + 2x + 3x^2
y2 = -2x + 5x^2 + 6x^3 + 9x^4
y3 = 1 + 8x^2 + 6x^3 + 9x^4
from lumpur.num.polynomial import Polynomial
from lumpur.viz.plot.polynomial import plot_polynomial
p1 = Polynomial([-1, 1])
p2 = Polynomial([-3, 1])
p3 = Polynomial([-5, 1])
p4 = Polynomial([-7, 1])
p = p1 * p2 * p3 * p4
dp = p.differentiate()
d2p = dp.differentiate()
d3p = d2p.differentiate()
d4p = d3p.differentiate()
d5p = d4p.differentiate()
x = [0.1*i for i in range(10, 71)]
plot_polynomial(x, p, label='p')
plot_polynomial(x, dp, label='dpdx')
plot_polynomial(x, d2p, label='d2p/dx2')
plot_polynomial(x, d3p, label='d3p/dx3')
plot_polynomial(x, d4p, label='d4p/dx4')
import lumpur.dat.clasdata as ldc
from lumpur.viz.plot.binary import plot_binary
coeffs = [[0.41], [-0.8, -1.2], [1, 0, 1]]
r1 = [0, 1.05, 0.05]
r2 = [0, 1.05, 0.05]
df = ldc.binary(coeffs, r1=r1, r2=r2)
plot_binary(df)
import lumpur.dat.clasdata as ldc
from lumpur.viz.plot.binary import plot_binary
coeffs = [[0], [-1, 1]]
df = ldc.binary(coeffs)
plot_binary(df)
import lumpur.use.misc.info as info
print(info.abbrv())
learn to use methods for processing unclear response