Skip to content

Commit

Permalink
Risklist module for production (#631)
Browse files Browse the repository at this point in the history
* listmaking WIP

* forgot migraton

* WIP

* alembic add label_value to list_predictions table

* add docstrings

* move risklist a layer above

* create risklist module

* __init__lpy

* fix alembic reversion and replace metta.generate_uuid with filename_friendly_hash

* Fix down revision of production schema migration

* Enable github checks on this branch too

* Closer to getting tests to run

* Add CLI for risklist

* Risklist docs stub

* Break up data gathering into experiment and matrix, use pytest fixtures to speed up subsequent tests

* Modify schema for list prediction metadata

* fix conflicts and add helper functions for getting imputed features

* Handle other imputation flag cases, fix tracking indentation error

* Add more tests, fill out doc page

* Fix exception name typo

* use timechop and planner to create matrix_metadata for production

* retrain and predict forward

* rename to retrain_definition

* reusing random seeds from existing models

* fix tests (write experiment to test db)

* unit test for reusing model random seeds

* add docstring

* only store random seed in experiment runs

* DB migration to remove random seed from experiments table

* debugging

* debug model trainer tests

* debug catwalk utils tests

* debug catwalk integration test

* use public method

* alembic merge

* reuse random seed

* use timechop for getting retrain information

* create retrain model hash in retrain level instead of model_trainer level

* move util functions to utils

* fix cli and docs

* update docs

* use reconstructed feature dict

* add RetrainModel and Retrain

* remove break point

* change experiment_runs to triage_runs

* get retrain_config

* explicitly include run_type in joins to triage_runs

* DB migration updates

* update argument name in docs

* ensure correct temporal config is used for predicting forward

* debug

* debug

Co-authored-by: Tristan Crockett <[email protected]>
Co-authored-by: Kit Rodolfa <[email protected]>
  • Loading branch information
3 people authored Aug 27, 2021
1 parent a994f3e commit 537813a
Show file tree
Hide file tree
Showing 31 changed files with 1,682 additions and 143 deletions.
1 change: 1 addition & 0 deletions docs/mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@ nav:
- Using Postmodeling: postmodeling/index.md
- Postmodeling & Crosstabs Configuration: postmodeling/postmodeling-config.md
- Model governance: dirtyduck/ml_governance.md
-Predictlist: predictlist/index.md
- Scaling up: dirtyduck/aws_batch.md
- Database Provisioner: db.md
- API Reference:
Expand Down
87 changes: 87 additions & 0 deletions docs/sources/predictlist/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Retrain and Predict
Use an existing model group to retrain a new model on all the data up to the current date and then predict forward into the future.

## Examples
Both examples assume you have already run a Triage Experiment in the past, and know these two pieces of information:
1. A `model_group_id` from a Triage model group that you want to use to retrain a model and generate prediction
2. A `prediction_date` to generate your predictions on.

### CLI
`triage retrainpredict <model_group_id> <prediction_date>`

Example:
`triage retrainpredict 30 2021-04-04`

The `retrainpredict` will assume the current path to be the 'project path' to train models and write matrices, but this can be overridden by sending the `--project-path` option

### Python
The `Retrainer` class from `triage.predictlist` module can be used to retrain a model and predict forward.

```python
from triage.predictlist import Retrainer
from triage import create_engine

retrainer = Retrainer(
db_engine=create_engine(<your-db-info>),
project_path='/home/you/triage/project2'
model_group_id=36,
)
retrainer.retrain(prediction_date='2021-04-04')
retrainer.predict(prediction_date='2021-04-04')

```

## Output
The retrained model is sotred similariy to the matrices created during an Experiment:
- Raw Matrix saved to the matrices directory in project storage
- Raw Model saved to the trained_model directory in project storage
- Retrained Model info saved in a table (triage_metadata.models) where model_comment = 'retrain_2021-04-04 21:19:09.975112'
- Predictions saved in a table (triage_production.predictions)
- Prediction metadata (tiebreaking, random seed) saved in a table (triage_produciton.prediction_metadata)


# Predictlist
If you would like to generate a list of predictions on already-trained Triage model with new data, you can use the 'Predictlist' module.

# Predict Foward with Existed Model
Use an existing model object to generate predictions on new data.

## Examples
Both examples assume you have already run a Triage Experiment in the past, and know these two pieces of information:
1. A `model_id` from a Triage model that you want to use to generate predictions
2. An `as_of_date` to generate your predictions on.

### CLI
`triage predictlist <model_id> <as_of_date>`

Example:
`triage predictlist 46 2019-05-06`

The predictlist will assume the current path to be the 'project path' to find models and write matrices, but this can be overridden by sending the `--project-path` option.

### Python

The `predict_forward_with_existed_model` function from the `triage.predictlist` module can be used similarly to the CLI, with the addition of the database engine and project storage as inputs.
```
from triage.predictlist import generate predict_forward_with_existed_model
from triage import create_engine
predict_forward_with_existed_model(
db_engine=create_engine(<your-db-info>),
project_path='/home/you/triage/project2'
model_id=46,
as_of_date='2019-05-06'
)
```

## Output
The Predictlist is stored similarly to the matrices created during an Experiment:
- Raw Matrix saved to the matrices directory in project storage
- Predictions saved in a table (triage_production.predictions)
- Prediction metadata (tiebreaking, random seed) saved in a table (triage_production.prediction_metadata)

## Notes
- The cohort and features for the Predictlist are all inferred from the Experiment that trained the given model_id (as defined by the experiment_models table).
- The feature list ensures that imputation flag columns are present for any columns that either needed to be imputed in the training process, or that needed to be imputed in the predictlist dataset.


11 changes: 6 additions & 5 deletions src/tests/catwalk_tests/test_model_trainers.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ def set_test_seed():
misc_db_parameters=dict(),
matrix_store=get_matrix_store(project_storage),
)

# assert
# 1. that the models and feature importances table entries are present
records = [
Expand Down Expand Up @@ -286,11 +285,13 @@ def test_reuse_model_random_seeds(grid_config, default_model_trainer):
def update_experiment_models(db_engine):
sql = """
INSERT INTO triage_metadata.experiment_models(experiment_hash,model_hash)
SELECT m.built_by_experiment, m.model_hash
FROM triage_metadata.models m
SELECT er.run_hash, m.model_hash
FROM triage_metadata.models m
LEFT JOIN triage_metadata.triage_runs er
ON m.built_in_triage_run = er.id
LEFT JOIN triage_metadata.experiment_models em
ON m.model_hash = em.model_hash
AND m.built_by_experiment = em.experiment_hash
ON m.model_hash = em.model_hash
AND er.run_hash = em.experiment_hash
WHERE em.experiment_hash IS NULL
"""
db_engine.execute(sql)
Expand Down
52 changes: 52 additions & 0 deletions src/tests/collate_tests/test_collate.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
Unit tests for `collate` module.
"""
import pytest
from triage.component.collate import Aggregate, Aggregation, Categorical

def test_aggregate():
Expand Down Expand Up @@ -191,3 +192,54 @@ def test_distinct():
),
)
) == ["count(distinct (x,y)) FILTER (WHERE date < '2012-01-01')"]


def test_Aggregation_colname_aggregate_lookup():
n = Aggregate("x", "sum", {})
d = Aggregate("1", "count", {})
m = Aggregate("y", "avg", {})
aggregation = Aggregation(
[n, d, m],
groups=['entity_id'],
from_obj="source",
prefix="mysource",
state_table="tbl"
)
assert aggregation.colname_aggregate_lookup == {
'mysource_entity_id_x_sum': 'sum',
'mysource_entity_id_1_count': 'count',
'mysource_entity_id_y_avg': 'avg'
}

def test_Aggregation_colname_agg_function():
n = Aggregate("x", "sum", {})
d = Aggregate("1", "count", {})
m = Aggregate("y", "stddev_samp", {})
aggregation = Aggregation(
[n, d, m],
groups=['entity_id'],
from_obj="source",
prefix="mysource",
state_table="tbl"
)

assert aggregation.colname_agg_function('mysource_entity_id_x_sum') == 'sum'
assert aggregation.colname_agg_function('mysource_entity_id_y_stddev_samp') == 'stddev_samp'


def test_Aggregation_imputation_flag_base():
n = Aggregate("x", ["sum", "count"], {})
m = Aggregate("y", "stddev_samp", {})
aggregation = Aggregation(
[n, m],
groups=['entity_id'],
from_obj="source",
prefix="mysource",
state_table="tbl"
)

assert aggregation.imputation_flag_base('mysource_entity_id_x_sum') == 'mysource_entity_id_x'
assert aggregation.imputation_flag_base('mysource_entity_id_x_count') == 'mysource_entity_id_x'
assert aggregation.imputation_flag_base('mysource_entity_id_y_stddev_samp') == 'mysource_entity_id_y_stddev_samp'
with pytest.raises(KeyError):
aggregation.imputation_flag_base('mysource_entity_id_x_stddev_samp')
2 changes: 1 addition & 1 deletion src/tests/postmodeling_tests/test_model_group_evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ def model_group_evaluator(finished_experiment):

def test_ModelGroupEvaluator_metadata(model_group_evaluator):
assert isinstance(model_group_evaluator.metadata, list)
assert len(model_group_evaluator.metadata) == 8 # 8 model groups expected from basic experiment
assert len(model_group_evaluator.metadata) == 2 # 2 models expected for a model_group from basic experiment
for row in model_group_evaluator.metadata:
assert isinstance(row, dict)

Expand Down
8 changes: 4 additions & 4 deletions src/tests/results_tests/factories.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,12 +181,12 @@ class Meta:
matrix_uuid = factory.SelfAttribute("matrix_rel.matrix_uuid")


class ExperimentRunFactory(factory.alchemy.SQLAlchemyModelFactory):
class TriageRunFactory(factory.alchemy.SQLAlchemyModelFactory):
class Meta:
model = schema.ExperimentRun
model = schema.TriageRun
sqlalchemy_session = session

experiment_rel = factory.SubFactory(ExperimentFactory)
# experiment_rel = factory.SubFactory(ExperimentFactory)

start_time = factory.fuzzy.FuzzyNaiveDateTime(datetime(2008, 1, 1))
start_method = "run"
Expand All @@ -210,7 +210,7 @@ class Meta:
models_skipped = 0
models_errored = 0
last_updated_time = factory.fuzzy.FuzzyNaiveDateTime(datetime(2008, 1, 1))
current_status = schema.ExperimentRunStatus.started
current_status = schema.TriageRunStatus.started
stacktrace = ""


Expand Down
20 changes: 20 additions & 0 deletions src/tests/test_cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import triage.cli as cli
from unittest.mock import Mock, patch
import os
import datetime


# we do not need a real database URL but one SQLalchemy thinks looks like a real one
Expand Down Expand Up @@ -56,3 +57,22 @@ def test_featuretest():
try_command('featuretest', 'example/config/experiment.yaml', '2017-06-06')
featuremock.assert_called_once()
cohortmock.assert_called_once()


def test_cli_predictlist():
with patch('triage.cli.predict_forward_with_existed_model', autospec=True) as mock:
try_command('predictlist', '40', '2019-06-04')
mock.assert_called_once()
assert mock.call_args[0][0].url
assert mock.call_args[0][1]
assert mock.call_args[0][2] == 40
assert mock.call_args[0][3] == datetime.datetime(2019, 6, 4)


def test_cli_retrain_predict():
with patch('triage.cli.Retrainer', autospec=True) as mock:
try_command('retrainpredict', '3', '2021-04-04')
mock.assert_called_once()
assert mock.call_args[0][0].url
assert mock.call_args[0][1]
assert mock.call_args[0][2] == 3
110 changes: 110 additions & 0 deletions src/tests/test_predictlist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
from triage.predictlist import Retrainer, predict_forward_with_existed_model, train_matrix_info_from_model_id, experiment_config_from_model_id
from triage.validation_primitives import table_should_have_data


def test_predict_forward_with_existed_model_should_write_predictions(finished_experiment):
# given a model id and as-of-date <= today
# and the model id is trained and is linked to an experiment with feature and cohort config
# generate records in triage_production.predictions
# the # of records should equal the size of the cohort for that date
model_id = 1
as_of_date = '2014-01-01'
predict_forward_with_existed_model(
db_engine=finished_experiment.db_engine,
project_path=finished_experiment.project_storage.project_path,
model_id=model_id,
as_of_date=as_of_date
)
table_should_have_data(
db_engine=finished_experiment.db_engine,
table_name="triage_production.predictions",
)


def test_predict_forward_with_existed_model_should_be_same_shape_as_cohort(finished_experiment):
model_id = 1
as_of_date = '2014-01-01'
predict_forward_with_existed_model(
db_engine=finished_experiment.db_engine,
project_path=finished_experiment.project_storage.project_path,
model_id=model_id,
as_of_date=as_of_date)

num_records_matching_cohort = finished_experiment.db_engine.execute(
f'''select count(*)
from triage_production.predictions
join triage_production.cohort_{finished_experiment.config['cohort_config']['name']} using (entity_id, as_of_date)
'''
).first()[0]

num_records = finished_experiment.db_engine.execute(
'select count(*) from triage_production.predictions'
).first()[0]
assert num_records_matching_cohort == num_records


def test_predict_forward_with_existed_model_matrix_record_is_populated(finished_experiment):
model_id = 1
as_of_date = '2014-01-01'
predict_forward_with_existed_model(
db_engine=finished_experiment.db_engine,
project_path=finished_experiment.project_storage.project_path,
model_id=model_id,
as_of_date=as_of_date)

matrix_records = list(finished_experiment.db_engine.execute(
"select * from triage_metadata.matrices where matrix_type = 'production'"
))
assert len(matrix_records) == 1


def test_experiment_config_from_model_id(finished_experiment):
model_id = 1
experiment_config = experiment_config_from_model_id(finished_experiment.db_engine, model_id)
assert experiment_config == finished_experiment.config


def test_train_matrix_info_from_model_id(finished_experiment):
model_id = 1
(train_matrix_uuid, matrix_metadata) = train_matrix_info_from_model_id(finished_experiment.db_engine, model_id)
assert train_matrix_uuid
assert matrix_metadata


def test_retrain_should_write_model(finished_experiment):
# given a model id and prediction_date
# and the model id is trained and is linked to an experiment with feature and cohort config
# create matrix for retraining a model
# generate records in production models
# retrain_model_hash should be the same with model_hash in triage_metadata.models
model_group_id = 1
prediction_date = '2014-03-01'

retrainer = Retrainer(
db_engine=finished_experiment.db_engine,
project_path=finished_experiment.project_storage.project_path,
model_group_id=model_group_id,
)
retrain_info = retrainer.retrain(prediction_date)
model_comment = retrain_info['retrain_model_comment']

records = [
row
for row in finished_experiment.db_engine.execute(
f"select model_hash from triage_metadata.models where model_comment = '{model_comment}'"
)
]
assert len(records) == 1
assert retrainer.retrain_model_hash == records[0][0]

retrainer.predict(prediction_date)

table_should_have_data(
db_engine=finished_experiment.db_engine,
table_name="triage_production.predictions",
)

matrix_records = list(finished_experiment.db_engine.execute(
f"select * from triage_metadata.matrices where matrix_uuid = '{retrainer.predict_matrix_uuid}'"
))
assert len(matrix_records) == 1
Loading

0 comments on commit 537813a

Please sign in to comment.