-
-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
initial implementation for fluid interface check
- Loading branch information
Showing
3 changed files
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
from dataclasses import dataclass | ||
|
||
from mypy.nodes import ( | ||
Block, | ||
Statement, | ||
AssignmentStmt, | ||
MypyFile, | ||
CallExpr, | ||
MemberExpr, | ||
NameExpr, | ||
) | ||
|
||
from refurb.checks.common import check_block_like | ||
from refurb.error import Error | ||
|
||
|
||
@dataclass | ||
class ErrorInfo(Error): | ||
r"""When an API has a Fluent Interface (the ability to chain multiple calls together), you should chain those calls | ||
instead of repeatedly assigning and using the value. | ||
Sometimes a return statement can be written more succinctly: | ||
Bad: | ||
```python | ||
def get_tensors(device: str) -> torch.Tensor: | ||
a = torch.ones(2, 1) | ||
a = a.long() | ||
a = a.to(device) | ||
return a | ||
def process(file_name: str): | ||
common_columns = ["col1_renamed", "col2_renamed", "custom_col"] | ||
df = spark.read.parquet(file_name) | ||
df = df \ | ||
.withColumnRenamed('col1', 'col1_renamed') \ | ||
.withColumnRenamed('col2', 'col2_renamed') | ||
df = df \ | ||
.select(common_columns) \ | ||
.withColumn('service_type', F.lit('green')) | ||
return df | ||
``` | ||
Good: | ||
```python | ||
def get_tensors(device: str) -> torch.Tensor: | ||
a = ( | ||
torch.ones(2, 1) | ||
.long() | ||
.to(device) | ||
) | ||
return a | ||
def process(file_name: str): | ||
common_columns = ["col1_renamed", "col2_renamed", "custom_col"] | ||
df = ( | ||
spark.read.parquet(file_name) | ||
.withColumnRenamed('col1', 'col1_renamed') | ||
.withColumnRenamed('col2', 'col2_renamed') | ||
.select(common_columns) | ||
.withColumn('service_type', F.lit('green')) | ||
) | ||
return df | ||
``` | ||
""" | ||
|
||
name = "use-fluid-interface" | ||
code = 184 | ||
categories = ("readability",) | ||
|
||
|
||
def check(node: Block | MypyFile, errors: list[Error]) -> None: | ||
check_block_like(check_stmts, node, errors) | ||
|
||
|
||
def check_call(node) -> bool: | ||
match node: | ||
# Single chain | ||
case CallExpr(callee=MemberExpr(expr=NameExpr(name=x), name=y)): | ||
return True | ||
# Nested | ||
case CallExpr(callee=MemberExpr(expr=call_node, name=y)): | ||
return check_call(call_node) | ||
|
||
return False | ||
|
||
|
||
def check_stmts(stmts: list[Statement], errors: list[Error]) -> None: | ||
last = "" | ||
|
||
for stmt in stmts: | ||
match stmt: | ||
case AssignmentStmt(lvalues=[NameExpr(name=name)], rvalue=rvalue): | ||
if last and f"{last}'" == name and check_call(rvalue): | ||
errors.append( | ||
ErrorInfo.from_node( | ||
stmt, | ||
f"Assignment statements should be chained", | ||
) | ||
) | ||
|
||
last = name | ||
|
||
case _: | ||
last = "" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
class torch: | ||
@staticmethod | ||
def ones(*args): | ||
return torch | ||
|
||
@staticmethod | ||
def long(): | ||
return torch | ||
|
||
@staticmethod | ||
def to(device: str): | ||
return torch.Tensor() | ||
|
||
class Tensor: | ||
pass | ||
|
||
|
||
def transform(x): | ||
return x | ||
|
||
|
||
class spark: | ||
class read: | ||
@staticmethod | ||
def parquet(file_name: str): | ||
return spark.DataFrame() | ||
|
||
class functions: | ||
@staticmethod | ||
def lit(constant): | ||
return constant | ||
|
||
@staticmethod | ||
def col(col_name): | ||
return col_name | ||
|
||
class DataFrame: | ||
@staticmethod | ||
def withColumnRenamed(col_in, col_out): | ||
return spark.DataFrame() | ||
|
||
@staticmethod | ||
def withColumn(col_in, col_out): | ||
return spark.DataFrame() | ||
|
||
@staticmethod | ||
def select(*args): | ||
return spark.DataFrame() | ||
|
||
# these will match | ||
def get_tensors(device: str) -> torch.Tensor: | ||
a = torch.ones(2, 1) | ||
a = a.long() | ||
a = a.to(device) | ||
return a | ||
|
||
|
||
def process(file_name: str): | ||
common_columns = ["col1_renamed", "col2_renamed", "custom_col"] | ||
df = spark.read.parquet(file_name) | ||
df = df \ | ||
.withColumnRenamed('col1', 'col1_renamed') \ | ||
.withColumnRenamed('col2', 'col2_renamed') | ||
df = df \ | ||
.select(common_columns) \ | ||
.withColumn('service_type', spark.functions.lit('green')) | ||
return df | ||
|
||
|
||
def projection(df_in: spark.DataFrame) -> spark.DataFrame: | ||
df = ( | ||
df_in.select(["col1", "col2"]) | ||
.withColumnRenamed("col1", "col1a") | ||
) | ||
return df.withColumn("col2a", spark.functions.col("col2").cast("date")) | ||
|
||
|
||
# these will not | ||
def no_match(): | ||
y = 10 | ||
y = transform(y) | ||
return y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
test/data/err_184.py:53:5 [FURB184]: Assignment statements should be chained | ||
test/data/err_184.py:54:5 [FURB184]: Assignment statements should be chained | ||
test/data/err_184.py:61:5 [FURB184]: Assignment statements should be chained | ||
test/data/err_184.py:64:5 [FURB184]: Assignment statements should be chained |