- Description: Cheetah Melanoma Detection is a solution to analyse skin lesions and assign a priority score based on the three most probable skin lesions detected by the model in order to schedule an appointment with the specialist.
- Data Source: HAM10000 dataset from ISIC archive
- Type of analysis: Deep Learning binary and multiclass models.
The initial setup.
Create virtualenv and install the project:
sudo apt-get install virtualenv python-pip python-dev
deactivate; virtualenv ~/venv ; source ~/venv/bin/activate ;\
pip install pip -U; pip install -r requirements.txt
Unittest test:
make clean install test
Check for ham10k-wagon in gitlab.com/{group}. If your project is not set please add it:
- Create a new project on
gitlab.com/{group}/ham10k-wagon
- Then populate it:
## e.g. if group is "{group}" and project_name is "ham10k-wagon"
git remote add origin [email protected]:{group}/ham10k-wagon.git
git push -u origin master
git push -u origin --tags
Functionnal test with a script:
cd
mkdir tmp
cd tmp
ham10k-wagon-run
Go to https://github.com/{group}/ham10k-wagon
to see the project, manage issues,
setup you ssh public key, ...
Create a python3 virtualenv and activate it:
sudo apt-get install virtualenv python-pip python-dev
deactivate; virtualenv -ppython3 ~/venv ; source ~/venv/bin/activate
Clone the project and install it:
git clone [email protected]:{group}/ham10k-wagon.git
cd ham10k-wagon
pip install -r requirements.txt
make clean install test # install and test
Functionnal test with a script:
cd
mkdir tmp
cd tmp
ham10k-wagon-run