Skip to content

Commit

Permalink
mongo parent document retrieval (langchain-ai#12887)
Browse files Browse the repository at this point in the history
  • Loading branch information
hwchase17 authored Nov 4, 2023
1 parent e43b407 commit 60d025b
Show file tree
Hide file tree
Showing 7 changed files with 379 additions and 0 deletions.
21 changes: 21 additions & 0 deletions templates/mongo-parent-document-retrieval/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2023 LangChain, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
178 changes: 178 additions & 0 deletions templates/mongo-parent-document-retrieval/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
# mongo-parent-document-retrieval

This template performs RAG using MongoDB and OpenAI.
It does a more advanced form of RAG called Parent-Document Retrieval.

In this form of retrieval, a large document is first split into medium sized chunks.
From there, those medium size chunks are split into small chunks.
Embeddings are created for the small chunks.
When a query comes in, an embedding is created for that query and compared to the small chunks.
But rather than passing the small chunks directly to the LLM for generation, the medium-sized chunks
from whence the smaller chunks came are passed.
This helps enable finer-grained search, but then passing of larger context (which can be useful during generation).

## Environment Setup

You should export two environment variables, one being your MongoDB URI, the other being your OpenAI API KEY.
If you do not have a MongoDB URI, see the `Setup Mongo` section at the bottom for instructions on how to do so.

```shell
export MONGO_URI=...
export OPENAI_API_KEY=...
```

## Usage

To use this package, you should first have the LangChain CLI installed:

```shell
pip install -U langchain-cli
```

To create a new LangChain project and install this as the only package, you can do:

```shell
langchain app new my-app --package mongo-parent-document-retrieval
```

If you want to add this to an existing project, you can just run:

```shell
langchain app add mongo-parent-document-retrieval
```

And add the following code to your `server.py` file:
```python
from mongo_parent_document_retrieval import chain as mongo_parent_document_retrieval_chain

add_routes(app, mongo_parent_document_retrieval_chain, path="/mongo-parent-document-retrieval")
```

(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section


```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```

If you DO NOT already have a Mongo Search Index you want to connect to, see `MongoDB Setup` section below before proceeding.
Note that because Parent Document Retrieval uses a different indexing strategy, it's likely you will want to run this new setup.

If you DO have a MongoDB Search index you want to connect to, edit the connection details in `mongo_parent_document_retrieval/chain.py`

If you are inside this directory, then you can spin up a LangServe instance directly by:

```shell
langchain serve
```

This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)

We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/mongo-parent-document-retrieval/playground](http://127.0.0.1:8000/mongo-parent-document-retrieval/playground)

We can access the template from code with:

```python
from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/mongo-parent-document-retrieval")
```

For additional context, please refer to [this notebook](https://colab.research.google.com/drive/1cr2HBAHyBmwKUerJq2if0JaNhy-hIq7I#scrollTo=TZp7_CBfxTOB).


## MongoDB Setup

Use this step if you need to setup your MongoDB account and ingest data.
We will first follow the standard MongoDB Atlas setup instructions [here](https://www.mongodb.com/docs/atlas/getting-started/).

1. Create an account (if not already done)
2. Create a new project (if not already done)
3. Locate your MongoDB URI.

This can be done by going to the deployement overview page and connecting to you database

![connect.png](_images/connect.png)

We then look at the drivers available

![driver.png](_images/driver.png)

Among which we will see our URI listed

![uri.png](_images/uri.png)

Let's then set that as an environment variable locally:

```shell
export MONGO_URI=...
```

4. Let's also set an environment variable for OpenAI (which we will use as an LLM)

```shell
export OPENAI_API_KEY=...
```

5. Let's now ingest some data! We can do that by moving into this directory and running the code in `ingest.py`, eg:

```shell
python ingest.py
```

Note that you can (and should!) change this to ingest data of your choice

6. We now need to set up a vector index on our data.

We can first connect to the cluster where our database lives

![cluster.png](_images%2Fcluster.png)

We can then navigate to where all our collections are listed

![collections.png](_images%2Fcollections.png)

We can then find the collection we want and look at the search indexes for that collection

![search-indexes.png](_images%2Fsearch-indexes.png)

That should likely be empty, and we want to create a new one:

![create.png](_images%2Fcreate.png)

We will use the JSON editor to create it

![json_editor.png](_images%2Fjson_editor.png)

And we will paste the following JSON in:

```text
{
"mappings": {
"dynamic": true,
"fields": {
"doc_level": [
{
"type": "token"
}
],
"embedding": {
"dimensions": 1536,
"similarity": "cosine",
"type": "knnVector"
}
}
}
}
```
![json.png](_images%2Fjson.png)

From there, hit "Next" and then "Create Search Index". It will take a little bit but you should then have an index over your data!

59 changes: 59 additions & 0 deletions templates/mongo-parent-document-retrieval/ingest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import os
import uuid

from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient

PARENT_DOC_ID_KEY = "parent_doc_id"


def parent_child_splitter(data, id_key=PARENT_DOC_ID_KEY):
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
# This text splitter is used to create the child documents
# It should create documents smaller than the parent
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
documents = parent_splitter.split_documents(data)
doc_ids = [str(uuid.uuid4()) for _ in documents]

docs = []
for i, doc in enumerate(documents):
_id = doc_ids[i]
sub_docs = child_splitter.split_documents([doc])
for _doc in sub_docs:
_doc.metadata[id_key] = _id
_doc.metadata["doc_level"] = "child"
docs.extend(sub_docs)
doc.metadata[id_key] = _id
doc.metadata["doc_level"] = "parent"
return documents, docs


MONGO_URI = os.environ["MONGO_URI"]

# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
DB_NAME = "langchain-test-2"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
EMBEDDING_FIELD_NAME = "embedding"
client = MongoClient(MONGO_URI)
db = client[DB_NAME]
MONGODB_COLLECTION = db[COLLECTION_NAME]

if __name__ == "__main__":
# Load docs
loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf")
data = loader.load()

# Split docs
parent_docs, child_docs = parent_child_splitter(data)

# Insert the documents in MongoDB Atlas Vector Search
_ = MongoDBAtlasVectorSearch.from_documents(
documents=parent_docs + child_docs,
embedding=OpenAIEmbeddings(disallowed_special=()),
collection=MONGODB_COLLECTION,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from mongo_parent_document_retrieval.chain import chain

__all__ = ["chain"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import os

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.document import Document
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient

MONGO_URI = os.environ["MONGO_URI"]
PARENT_DOC_ID_KEY = "parent_doc_id"
# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
DB_NAME = "langchain-test-2"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
EMBEDDING_FIELD_NAME = "embedding"
client = MongoClient(MONGO_URI)
db = client[DB_NAME]
MONGODB_COLLECTION = db[COLLECTION_NAME]


vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGO_URI,
DB_NAME + "." + COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)


def retrieve(query: str):
results = vector_search.similarity_search(
query,
k=4,
pre_filter={"doc_level": {"$eq": "child"}},
post_filter_pipeline=[
{"$project": {"embedding": 0}},
{
"$lookup": {
"from": COLLECTION_NAME,
"localField": PARENT_DOC_ID_KEY,
"foreignField": PARENT_DOC_ID_KEY,
"as": "parent_context",
"pipeline": [
{"$match": {"doc_level": "parent"}},
{"$limit": 1},
{"$project": {"embedding": 0}},
],
}
},
],
)
parent_docs = []
parent_doc_ids = set()
for result in results:
res = result.metadata["parent_context"][0]
text = res.pop("text")
# This causes serialization issues.
res.pop("_id")
parent_doc = Document(page_content=text, metadata=res)
if parent_doc.metadata[PARENT_DOC_ID_KEY] not in parent_doc_ids:
parent_doc_ids.add(parent_doc.metadata[PARENT_DOC_ID_KEY])
parent_docs.append(parent_doc)
return parent_docs


# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

# RAG
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retrieve, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)


# Add typing for input
class Question(BaseModel):
__root__: str


chain = chain.with_types(input_type=Question)
27 changes: 27 additions & 0 deletions templates/mongo-parent-document-retrieval/pyproject.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
[tool.poetry]
name = "mongo-parent-document-retrieval"
version = "0.0.1"
description = ""
authors = []
readme = "README.md"

[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain = ">=0.0.313, <0.1"
openai = "^0.28.1"
pymongo = "^4.6.0"
pypdf = "^3.17.0"
tiktoken = "^0.5.1"

[tool.poetry.group.dev.dependencies]
langchain-cli = ">=0.0.4"
fastapi = "^0.104.0"
sse-starlette = "^1.6.5"

[tool.langserve]
export_module = "mongo_parent_document_retrieval"
export_attr = "chain"

[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
Empty file.

0 comments on commit 60d025b

Please sign in to comment.