Skip to content

Commit

Permalink
Update the spark version to the current version (#1055)
Browse files Browse the repository at this point in the history
* update the spark version to the current version
* update pin for pydantic to resolve explosion/spaCy#12659
* exclude koalas dataframes from test
  • Loading branch information
mikealfare authored Jun 26, 2024
1 parent 50634b9 commit 824ca0f
Showing 1 changed file with 30 additions and 5 deletions.
35 changes: 30 additions & 5 deletions tests/functional/adapter/test_python_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,22 @@ class TestPythonModelSpark(BasePythonModelTests):

@pytest.mark.skip_profile("apache_spark", "spark_session", "databricks_sql_endpoint")
class TestPySpark(BasePySparkTests):
@pytest.mark.skip("https://github.com/dbt-labs/dbt-spark/issues/1054")
def test_different_dataframes(self, project):
return super().test_different_dataframes(project)
"""
Test that python models are supported using dataframes from:
- pandas
- pyspark
- pyspark.pandas (formerly dataspark.koalas)
Note:
The CI environment is on Apache Spark >3.1, which includes koalas as pyspark.pandas.
The only Databricks runtime that supports Apache Spark <=3.1 is 9.1 LTS, which is EOL 2024-09-23.
For more information, see:
- https://github.com/databricks/koalas
- https://docs.databricks.com/en/release-notes/runtime/index.html
"""
results = run_dbt(["run", "--exclude", "koalas_df"])
assert len(results) == 3


@pytest.mark.skip_profile("apache_spark", "spark_session", "databricks_sql_endpoint")
Expand All @@ -37,7 +50,7 @@ def model(dbt, spark):
materialized='table',
submission_method='job_cluster',
job_cluster_config={
"spark_version": "7.3.x-scala2.12",
"spark_version": "12.2.x-scala2.12",
"node_type_id": "i3.xlarge",
"num_workers": 0,
"spark_conf": {
Expand All @@ -48,7 +61,7 @@ def model(dbt, spark):
"ResourceClass": "SingleNode"
}
},
packages=['spacy', 'torch', 'pydantic<1.10.3']
packages=['spacy', 'torch', 'pydantic>=1.10.8']
)
data = [[1,2]] * 10
return spark.createDataFrame(data, schema=['test', 'test2'])
Expand All @@ -67,11 +80,23 @@ def model(dbt, spark):

@pytest.mark.skip_profile("apache_spark", "spark_session", "databricks_sql_endpoint")
class TestChangingSchemaSpark:
"""
Confirm that we can setup a spot instance and parse required packages into the Databricks job.
Notes:
- This test generates a spot instance on demand using the settings from `job_cluster_config`
in `models__simple_python_model` above. It takes several minutes to run due to creating the cluster.
The job can be monitored via "Data Engineering > Job Runs" or "Workflows > Job Runs"
in the Databricks UI (instead of via the normal cluster).
- The `spark_version` argument will need to periodically be updated. It will eventually become
unsupported and start experiencing issues.
- See https://github.com/explosion/spaCy/issues/12659 for why we're pinning pydantic
"""

@pytest.fixture(scope="class")
def models(self):
return {"simple_python_model.py": models__simple_python_model}

@pytest.mark.skip("https://github.com/dbt-labs/dbt-spark/issues/1054")
def test_changing_schema_with_log_validation(self, project, logs_dir):
run_dbt(["run"])
write_file(
Expand Down

0 comments on commit 824ca0f

Please sign in to comment.