The mission of hablar
is for you to get non-astonishing results! That
means that functions return what you expected. R has some intuitive
quirks that beginners and experienced programmers fail to identify. Some
of the first weird features of R that hablar
solves:
-
Missing values
NA
and irrational valuesInf
,NaN
is dominant. For example, in Rsum(c(1, 2, NA))
isNA
and not 3. Inhablar
the addition of an underscoresum_(c(1, 2, NA))
returns 3, as is often expected. -
Factors (categorical variables) that are converted to numeric returns the number of the category rather than the value. In
hablar
theconvert()
function always changes the type of the values. -
Finding duplicates, and rows with
NA
can be cumbersome. The functionsfind_duplicates()
andfind_na()
make it easy to find where the data frame needs to be fixed. When the issues are found the utility replacement functions, e.g.if_else_()
,if_na()
,zero_if()
easily fixes many of the most common problems you face.
hablar
follows the syntax API of tidyverse
and works seamlessly with
dplyr
and tidyselect
.
You can install hablar
from CRAN:
install.packages("hablar")
Or preferably:
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, hablar)
The most useful function of hablar
is maybe convert. convert helps the
user to quickly and dynamically change data type of columns in a data
frame. convert always converts factors to character before further
conversion. Works with tidyselect
.
mtcars %>%
convert(int(cyl, am),
fct(disp:drat),
chr(contains("w")))
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <int> <fct> <fct> <fct> <chr> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.875 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.4 1 0 3 1
#> # ... with 28 more rows
For more information type vignette("convert")
in the console.
Often summary function like min, max and mean return surprising results.
Combining _
with your summary function ensures you that you will get a
result, if there is one in your data. It ignores irrational numbers like
Inf
and NaN
as well as NA
. If all elements are NA, Inf, NaN
it
returns NA.
starwars %>%
summarise(min_height_baseR = min(height),
min_height_hablar = min_(height))
#> # A tibble: 1 x 2
#> min_height_baseR min_height_hablar
#> <int> <int>
#> 1 NA 66
The function min_
omitted that the variable height
contained NA
.
For more information type vignette("s")
in the console.
When cleaning data you spend a lot of time understanding your data.
Sometimes you get more row than you expected when doing a left_join()
.
Or you did not know that certain column contained missing values NA
or
irrational values like Inf
or NaN
.
In hablar
the find_*
functions speeds up your search for the
problem. To find duplicated rows you simply df %>% find_duplicates()
.
You can also find duplicates in in specific columns, which can be useful
before joins.
# Create df with duplicates
df <- mtcars %>%
bind_rows(mtcars %>% slice(1, 5, 9))
# Return rows with duplicates in cyl and am
df %>%
find_duplicates(cyl, am)
#> # A tibble: 35 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> # ... with 31 more rows
There are also find functions for other cases. For example find_na()
returns rows with missing values.
starwars %>%
find_na(height)
#> # A tibble: 6 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Arvel C~ NA NA brown fair brown NA male mascul~
#> 2 Finn NA NA black dark dark NA male mascul~
#> 3 Rey NA NA brown light hazel NA fema~ femini~
#> 4 Poe Dam~ NA NA brown light brown NA male mascul~
#> # ... with 2 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
If you rather want a Boolean value instead then
e.g. check_duplicates()
returns TRUE
if the data frame contains
duplicates, otherwise it returns FALSE
.
Let’s say that we have found a problem is caused by missing values in
the column height
and you want to replace all missing values with the
integer 100. hablar
comes with an additional ways of doing if-or-else.
starwars %>%
find_na(height) %>%
mutate(height = if_na(height, 100L))
#> # A tibble: 6 x 14
#> name height mass hair_color skin_color eye_color birth_year sex gender
#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 Arvel C~ 100 NA brown fair brown NA male mascul~
#> 2 Finn 100 NA black dark dark NA male mascul~
#> 3 Rey 100 NA brown light hazel NA fema~ femini~
#> 4 Poe Dam~ 100 NA brown light brown NA male mascul~
#> # ... with 2 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> # films <list>, vehicles <list>, starships <list>
In the chunk above we successfully replaced all missing heights with the
integer 100. hablar
also contain the self explained:
if_zero()
andzero_if()
if_inf()
andinf_if()
if_nan()
andnan_if()
which works in the same way as the examples above.
A function for quick and dirty data type conversion. All columns are evaluated and converted to the simplest possible without loosing any information.
mtcars %>% retype()
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> # ... with 28 more rows
All variables with only integer were converted to type integer. For more
information type vignette("retype")
in the console.
Hablar means ‘speak R’ in Spanish.