Skip to content

datacraft-sciences/confuse

Repository files navigation

confuse

Binary and Multi-class evaluation metrics for classification tasks in machine learning.

Installation

Add the following to your :dependencies:

Clojars Project

Documentation

Supported metrics

Counts

  • True positives
  • False positives
  • False negatives
  • True negatives

Binary class Metrics

  • sensitivity / specificity / true positive rate
  • specificity / true negative rate
  • false positive rate
  • false negative rate
  • precision
  • f1-score
  • accuracy
  • misclassification-rate
  • confusion matrix

Multi-class metrics

  • Micro averaged fmeasure/precision/recall
  • Macro averaged fmeasure/precision/recall

Usage

  • Define the predicted and actuals in 2 different vectors
  • Call any of the apis with the actuals, predicted vectors as arguments
  • Some APIs require the positive class to be provided as a third argument
(:require [confuse.binary-class-metrics :refer :all])
(def pred [1 0 1 1 0])
(def ac [1 1 1 1 0])

;;assume the positive class is 1
(true-positives ac pred 1)
;;3

;;calculate accuracy
(accuracy ac pred)
;;0.8

;;predicted and actuals could be keywords too
(def spam-pred [:spam :spam :notspam :notspam :spam])
(def spam-actual [:spam :notspam :spam :notspam :spam])

;;pass the positive class as the third argument
(true-positives spam-actual spam-pred :spam)
;;2

;;Confusion matrix
;;returns a map where the key is frequency [predicted actual] and value is the count 
;;against that key 
(confusion-matrix spam-actual spam-pred)
;;{[:spam :spam] 2, [:spam :notspam] 1, [:notspam :spam] 1, [:notspam :notspam] 1}

;;The API for multi-class metrics requires an additional argument:
;;the set of all possible classes.
(micro-avg-fmeasure [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.4
(macro-avg-fmeasure [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.5

(micro-avg-precision [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.4
(macro-avg-precision [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.33

(micro-avg-recall [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.4
(macro-avg-recall [1 2 3 1 2] [1 2 1 2 3] #{1 2 3})
;;0.33

License

Copyright © 2017 Datacraft Sciences

Distributed under the Eclipse Public License either version 1.0 or (at your option) any later version.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •