-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Committing everything for backup purposes
- Loading branch information
Showing
10 changed files
with
306 additions
and
202 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
#%% | ||
import random | ||
import torch | ||
from transformer_lens import HookedTransformer | ||
from transformer_lens.utils import test_prompt, get_attention_mask, LocallyOverridenDefaults | ||
import plotly.express as px | ||
from utils.prompts import CleanCorruptedCacheResults, get_dataset, PromptType, ReviewScaffold, CleanCorruptedDataset | ||
#%% | ||
model = HookedTransformer.from_pretrained("EleutherAI/pythia-1.4b") | ||
#%% | ||
batch_size = 256 | ||
device = torch.device("cuda") | ||
prompt_type = PromptType.TREEBANK_TEST | ||
scaffold = ReviewScaffold.CLASSIFICATION | ||
names_filter = lambda _: False | ||
clean_corrupt_data: CleanCorruptedDataset = get_dataset( | ||
model, device, prompt_type=prompt_type, scaffold=scaffold, | ||
) | ||
#%% | ||
print(len(clean_corrupt_data)) | ||
# #%% | ||
# get_attention_mask(model.tokenizer, clean_corrupt_data.clean_tokens, prepend_bos=False).sum(axis=1) | ||
#%% | ||
non_pad_tokens = clean_corrupt_data.get_num_non_pad_tokens() | ||
px.histogram(non_pad_tokens.cpu(), nbins=100) | ||
#%% | ||
# with LocallyOverridenDefaults(model, padding_side="left"): | ||
patching_dataset: CleanCorruptedCacheResults = clean_corrupt_data.restrict_by_padding( | ||
0, 25 | ||
).run_with_cache( | ||
model, | ||
names_filter=names_filter, | ||
batch_size=batch_size, | ||
device=device, | ||
disable_tqdm=True, | ||
center=True, | ||
) | ||
print(len(patching_dataset.clean_logit_diffs)) | ||
print(patching_dataset) | ||
# %% | ||
len(patching_dataset.clean_logit_diffs), len(clean_corrupt_data.all_prompts) | ||
#%% | ||
patching_dataset.clean_logit_diffs[:10] | ||
#%% | ||
sample_index = random.randint(0, len(clean_corrupt_data.all_prompts)) | ||
clean_corrupt_data.all_prompts[sample_index] | ||
#%% | ||
# With padding | ||
test_prompt( | ||
model.to_string(clean_corrupt_data.clean_tokens[sample_index]), | ||
model.to_string(clean_corrupt_data.answer_tokens[sample_index, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
) | ||
#%% | ||
# Without padding | ||
test_prompt( | ||
clean_corrupt_data.all_prompts[sample_index], | ||
model.to_string(clean_corrupt_data.answer_tokens[sample_index, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
) | ||
#%% | ||
with LocallyOverridenDefaults(model, padding_side="right"): | ||
test_prompt( | ||
model.to_string(clean_corrupt_data.clean_tokens[sample_index]), | ||
model.to_string(clean_corrupt_data.answer_tokens[sample_index, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
) | ||
#%% | ||
# Artificial left padding | ||
with LocallyOverridenDefaults(model, padding_side="left"): | ||
test_prompt( | ||
"".join([model.tokenizer.pad_token] * 2) + clean_corrupt_data.all_prompts[sample_index], | ||
model.to_string(clean_corrupt_data.answer_tokens[sample_index, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
prepend_bos=True, | ||
) | ||
#%% | ||
# Artificial right padding | ||
with LocallyOverridenDefaults(model, padding_side="right"): | ||
test_prompt( | ||
clean_corrupt_data.all_prompts[sample_index] + "".join([model.tokenizer.pad_token] * 2), | ||
model.to_string(clean_corrupt_data.answer_tokens[sample_index, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
prepend_bos=True, | ||
) | ||
#%% | ||
# Attention mask for right padding | ||
with LocallyOverridenDefaults(model, padding_side="right"): | ||
print(get_attention_mask( | ||
model.tokenizer, | ||
model.to_tokens( | ||
clean_corrupt_data.all_prompts[sample_index] + | ||
"".join([model.tokenizer.pad_token] * 2), | ||
prepend_bos=False | ||
), | ||
prepend_bos=True, | ||
)) | ||
#%% | ||
test_prompt( | ||
clean_corrupt_data.all_prompts[0], | ||
model.to_string(clean_corrupt_data.answer_tokens[0, 0, 0]), | ||
model, | ||
prepend_space_to_answer=False, | ||
) | ||
# %% | ||
test_prompt( | ||
clean_corrupt_data.all_prompts[1], | ||
model.to_string(clean_corrupt_data.answer_tokens[0, 0, 1]), | ||
model, | ||
prepend_space_to_answer=False, | ||
) | ||
# %% |
Oops, something went wrong.