Skip to content

cuicaihao/aerial-image-segmentation

Repository files navigation

Aerial Image Segmentation with PyTorch (2021 v1.7.1)

Aerial Image Labeling addresses a core topic in remote sensing: the automatic pixel-wise labelling of aerial imagery. The UNet leads to more advanced design in Aerial Image Segmentation. Future updates will gradually apply those methods into this repository.

This repo used only one sample (kitsap11.tif ) from the public dataset (Inria Aerial Image Labelling ) to demonstrate the power of deep learning.

Data processing steps and codes can be find in this file. The original sample has been preprocessed into 1000x1000 with 1.5 meter resolution.

GT-Overlay-RGB Photo

Prerequisites

  • Anaconda: Your data science toolkit.
  • mini-conda: a free minimal installer for conda. It is a small, bootstrap version of Anaconda that includes only conda,

Python Package Setup

Create a new virtual environment to install the required libraries, use 'conda' or 'pyenv' with the following Python Packages:

  • numpy==1.19.2
  • matplotlib==3.3.2
  • pillow==8.10
  • pytorch==1.7.1
  • torchsummary==1.5.1
  • torchvision==0.8.2
  • tqdm==4.51.0
  • opencv-python==4.5.1

Deep Learning for Aerial Image Labelling GUI

You can start the App with GUI with the following command:

python app_gui.py
# or pythonw GUI_DL_AIM.py # on MacOS

Step 1: select the image and file paths.

GUI01

Step 2: setup model configurations / click Start

GUI02

Step 3: wait for the results or Stop the program

GUI03

Step 4: Edit (Data IO/Model Options) and Restart or Close the Program

GUI04

The GUI is designed with respect to the original python argparse setting with Gooey Packages.

  • Data IO: input and output file and paths.
  • Model Options: Time, Date, GPU, Pretrained model, Epochs, Batch Size, Learning Rate, Regularization.
  • Cancel/ Start Button to Execute the program.

Notification: When Epochs Number is 0, it will load the pre-trained model to predict the masks only without training.

Suggestion: Use GPU and CUDA 11

I test this repo with my XPS 15 Intel-i7-CPU with GPU-1050TI-maxQ-4GB-RAM & CUDA 11. ** It is fair to say GPU is at least 10 times faster than the CPU.**

Here are the training experimental Records on the sample image pair:

Metric 5 Epochs 100 Epochs 200 Epochs
# Accuracy 0.801270 0.937253 0.963028
# Sensitivity 0.811900 0.860760 0.686358
# Precision 0.260489 0.570543 0.820489
# Specificity 0.800349 0.943879 0.986993
# Fmeasure 0.394429 0.686229 0.747454
# MCC 0.383756 0.670022 0.731054
# Dice 0.394429 0.686229 0.747454
# IoU (Jacard) 0.245663 0.522335 0.596748

epoch=5

epoch=100

epoch=200

Train (Deep) ConvNets - U-Nets with new data

$ python train.py --epoch 1 # 1 (default) or 200

or add arguments for different model inference configurations.

$ python train.py -h

usage: AIL: Aerial Image Labelling [options]

Aerial Image Labelling with Deep Learning.

optional arguments:
  -h, --help            show this help message and exit
  --input_RGB Input RGB Images:
                        string of RGB image file path
  --input_GT INPUT_GT   string of Ground Truce (GT image file path
  --output_model_path OUTPUT_MODEL_PATH
  --output_loss_plot OUTPUT_LOSS_PLOT
  --output_images OUTPUT_IMAGES
                        string of output image file path
  --version, -v         show program's version number and exit
  --use_gpu USE_GPU     Use GPU in Traning the Model (default: False)
  --use_pretrain USE_PRETRAIN
                        Use Pre-Trained ConvNets in Traning the Model (default: True)
  --tile_size TILE_SIZE TILE_SIZE
                        input tile size
  --epochs EPOCHS       epoch number
  --batch_size BATCH_SIZE
                        batch size (?, channel, width, height)
  --learning_rate LEARNING_RATE
                        model training learning rate
  --weight_decay WEIGHT_DECAY
                        model weight decay / l2 regularization

And that's how AI can help

Output

Epoch  1/200: 100%|██████████████████████| 223/223 [01:53<00:00,  1.96it/s, loss=0.653383]
Epoch  2/200: 100%|██████████████████████| 223/223 [01:47<00:00,  2.07it/s, loss=0.461838]
Epoch  3/200: 100%|██████████████████████| 223/223 [01:53<00:00,  1.97it/s, loss=0.445231]
... ...
(i) Model saved at ./weights/model.pt
(i) Loss plot saved at ./images/output/loss_plot.png

Loss plot

Predict (Training Validation)

Use the training data as input to test the model.

$ python predict.py
# python predict.py -h

Output

(base) ➜  aerial-image-segmentation git:(master) ✗ python predict.py
GPU is not available and using CPU instead.
use pre-trained model!
Image Labelling Complete in 0m 6s
(i)    Prediction and Mask image saved at output//prediction.png
(ii)   Mask image saved at output//mask.png
================================================================
[Metric Computation]
Accuracy       =>   0.963028
Sensitivity    =>   0.686358
Precision      =>   0.820489
Specificity    =>   0.986993
Fmeasure       =>   0.747454
MCC            =>   0.731054
Dice           =>   0.747454
IoU (Jacard)   =>   0.596748
----------------------------------------------------------------
model start: 22:16:56 end: 22:17:03.

RGB, GT, Mask, Prediction:

Ground True Mask

Ground True Mask

Binary Mask

Predicted

Binary with mask:

This is a binary mask, you can see there are extra works needed to improve the results. The improments can be from the Deep Learning model or the Image Postprocessing method.

2021 Mar 13 Sat 18:22:45

Add UNet Model:

(rs) ➜  aerial-image-segmentation git:(master) ✗ python predict.py
GPU is not available and using CPU instead.
use pretrained model!
Image Labelling Complete in 0m 15s
(i)    Prediction and Mask image saved at output//prediction.png
(ii)   Mask image saved at output//mask.png
================================================================
[Metric Computation]
Accuracy       =>   0.976881
Sensitivity    =>   0.816324
Precision      =>   0.884739
Specificity    =>   0.990788
Fmeasure       =>   0.849156
MCC            =>   0.837453
Dice           =>   0.849156
IoU (Jacard)   =>   0.737855
----------------------------------------------------------------
model start: 18:13:42 end: 18:13:57.

Reference

  • Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam, arXiv: 1802.02611, 2018.
  • Xception: Deep Learning with Depthwise Separable Convolutions, François Chollet, Proc. of CVPR, 2017.
  • Deformable Convolutional Networks — COCO Detection and Segmentation Challenge 2017 Entry, Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, and Jifeng Dai, ICCV COCO Challenge Workshop, 2017.
  • Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs, Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille, Proc. of ICLR, 2015.
  • Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille, TPAMI, 2017.
  • Rethinking Atrous Convolution for Semantic Image Segmentation, Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam, arXiv:1706.05587, 2017.

Acknowledgement

This repository is based on the original repository by Roman Roibu. Improvements and changes have been made due to the rapid development in deep learning community.

--END--

About

Aerial Image segmentation by PyTorch

Resources

Stars

Watchers

Forks

Packages

No packages published