Make sure to read Apple's API Design Guidelines.
Specifics from these guidelines + additional remarks are mentioned below.
This guide was last updated for Swift 5.0 on Febuary 17th, 2021.
- 1.1 Use 4 spaces for tabs.
- 1.2 Avoid uncomfortably long lines with a hard maximum of 160 characters per line (Xcode->Preferences->Text Editing->Page guide at column: 160 is helpful for this)
- 1.3 Ensure that there is a newline at the end of every file.
- 1.4 Ensure that there is no trailing whitespace anywhere (Xcode->Preferences->Text Editing->Automatically trim trailing whitespace + Including whitespace-only lines).
- 1.5 Do not place opening braces on new lines - we use the 1TBS style.
class SomeClass {
func someMethod() {
if x == y {
/* ... */
} else if x == z {
/* ... */
} else {
/* ... */
}
}
/* ... */
}
- 1.6 When writing a type for a property, constant, variable, a key for a dictionary, a function argument, a protocol conformance, or a superclass, don't add a space before the colon.
// specifying type
let pirateViewController: PirateViewController
// dictionary syntax (note that we left-align as opposed to aligning colons)
let ninjaDictionary: [String: AnyObject] = [
"fightLikeDairyFarmer": false,
"disgusting": true
]
// declaring a function
func myFunction<T, U: SomeProtocol>(firstArgument: U, secondArgument: T) where T.RelatedType == U {
/* ... */
}
// calling a function
someFunction(someArgument: "Kitten")
// superclasses
class PirateViewController: UIViewController {
/* ... */
}
// protocols
extension PirateViewController: UITableViewDataSource {
/* ... */
}
- 1.7 In general, there should be a space following a comma.
let myArray = [1, 2, 3, 4, 5]
- 1.8 There should be a space before and after a binary operator such as
+
,==
, or->
. There should also not be a space after a(
and before a)
.
let myValue = 20 + (30 / 2) * 3
if 1 + 1 == 3 {
fatalError("The universe is broken.")
}
func pancake(with syrup: Syrup) -> Pancake {
/* ... */
}
- 1.9 We follow Xcode's recommended indentation style (i.e. your code should not change if CTRL-I is pressed). When declaring a function that spans multiple lines, prefer using that syntax to which Xcode, as of version 7.3, defaults.
// Xcode indentation for a function declaration that contains two parameters
func myFunctionWithManyParameters(parameterOne: String, parameterTwo: String) {
// Xcode indents to here for this kind of statement
print("\(parameterOne) \(parameterTwo))")
}
// Xcode indentation for a function declaration that contains more than two parameters or legnth of function declaration is longer than 160 characters.
func myFunctionWithManyParameters(
parameterOne: String,
parameterTwo: String,
parameterThree: String
) {
// Xcode indents to here for this kind of statement
print("\(parameterOne) \(parameterTwo) \(parameterThree)")
}
// Xcode indentation for a multi-line `if` statement
if myFirstValue > (mySecondValue + myThirdValue)
&& myFourthValue == .someEnumValue {
// Xcode indents to here for this kind of statement
print("Hello, World!")
}
- 1.10 When calling a function that has many parameters, put each argument on a separate line with a single indentation.
// Function with two or less parameters
someFunctionWithManyArguments(firstArgument: "Hello, I am a string",
secondArgument: resultFromSomeFunction())
// Function with three or more parameters
someFunctionWithManyArguments(
firstArgument: "Hello, I am a string",
secondArgument: resultFromSomeFunction(),
thirdArgument: someOtherLocalProperty
)
- 1.11 When dealing with an implicit array or dictionary large enough to warrant splitting it into multiple lines, treat the
[
and]
as if they were braces in a method,if
statement, etc. Closures in a method should be treated similarly.
someFunctionWithABunchOfArguments(
someStringArgument: "hello I am a string",
someArrayArgument: [
"dadada daaaa daaaa dadada daaaa daaaa dadada daaaa daaaa",
"string one is crazy - what is it thinking?"
],
someDictionaryArgument: [
"dictionary key 1": "some value 1, but also some more text here",
"dictionary key 2": "some value 2"
],
someClosure: { parameter1 in
print(parameter1)
}
)
- 1.12 Prefer using local constants or other mitigation techniques to avoid multi-line predicates where possible.
Good | Not Good |
---|---|
let firstCondition = x == firstReallyReallyLongPredicateFunction()
let secondCondition = y == secondReallyReallyLongPredicateFunction()
let thirdCondition = z == thirdReallyReallyLongPredicateFunction()
if firstCondition && secondCondition && thirdCondition {
// do something
} |
if x == firstReallyReallyLongPredicateFunction()
&& y == secondReallyReallyLongPredicateFunction()
&& z == thirdReallyReallyLongPredicateFunction() {
// do something
} |
-
2.1 There is no need for Objective-C style prefixing in Swift (e.g. use just
GuybrushThreepwood
instead ofLIGuybrushThreepwood
). -
2.2 Use
PascalCase
for type names (e.g.struct
,enum
,class
,typedef
,associatedtype
, etc.). -
2.3 Use
camelCase
(initial lowercase letter) for function, method, property, constant, variable, argument names, enum cases, etc.). -
2.4 When dealing with an acronym or other name that is usually written in all caps, actually use all caps in any names that use this in code. The exception is if this word is at the start of a name that needs to start with lowercase - in this case, use all lowercase for the acronym.
// "HTML" is at the start of a constant name, so we use lowercase "html"
let htmlBodyContent: String = "<p>Hello, World!</p>"
// Prefer using ID to Id
let profileID: Int = 1
// Prefer URLFinder to UrlFinder
class URLFinder {
/* ... */
}
- 2.5 All constants other than singletons that are instance-independent should be
static
. All suchstatic
constants should be placed in a containerenum
type as per rule 3.1.16. The naming of this container should be singular (e.g.Constant
and notConstants
) and it should be named such that it is relatively obvious that it is a constant container. If this is not obvious, you can add aConstant
suffix to the name. You should use these containers to group constants that have similar or the same prefixes, suffixes and/or use cases.
Good | Not Good |
---|---|
class MyClassName {
enum AccessibilityIdentifier {
static let pirateButton = "pirate_button"
}
enum SillyMathConstant {
static let indianaPi = 3
}
static let shared = MyClassName()
} |
class MyClassName {
static let kPirateButtonAccessibilityIdentifier = "pirate_button"
enum SillyMath {
static let indianaPi = 3
}
enum Singleton {
static let shared = MyClassName()
}
} |
- 2.6 For generics and associated types, use either a single capital letter or a
PascalCase
word that describes the generic. If this word clashes with a protocol that it conforms to or a superclass that it subclasses, you can append aType
suffix to the associated type or generic name.
class SomeClass<T> { /* ... */ }
class SomeClass<Model> { /* ... */ }
protocol Modelable {
associatedtype Model
}
protocol Sequence {
associatedtype IteratorType: Iterator
}
- 2.7 Names should be descriptive and unambiguous.
Good | Not Good |
---|---|
class RoundAnimatingButton: UIButton { /* ... */ } |
class CustomButton: UIButton { /* ... */ } |
- 2.8 Do not abbreviate, use shortened names, or single letter names.
Good | Not Good |
---|---|
class RoundAnimatingButton: UIButton {
let animationDuration: NSTimeInterval
func startAnimating() {
let firstSubview = subviews.first
}
} |
class RoundAnimating: UIButton {
let aniDur: NSTimeInterval
func srtAnmating() {
let v = subviews.first
}
} |
- 2.9 Include type information in constant or variable names when it is not obvious otherwise.
Good | Not Good |
---|---|
class ConnectionTableViewCell: UITableViewCell {
let personImageView: UIImageView
let animationDuration: TimeInterval
// it is ok not to include string in the ivar name here because it's obvious
// that it's a string from the property name
let firstName: String
// though not preferred, it is OK to use `Controller` instead of `ViewController`
let popupController: UIViewController
let popupViewController: UIViewController
// when working with a subclass of `UIViewController` such as a table view
// controller, collection view controller, split view controller, etc.,
// fully indicate the type in the name.
let popupTableViewController: UITableViewController
// when working with outlets, make sure to specify the outlet type in the
// property name.
@IBOutlet weak var submitButton: UIButton!
@IBOutlet weak var emailTextField: UITextField!
@IBOutlet weak var nameLabel: UILabel!
} |
class ConnectionTableViewCell: UITableViewCell {
// this isn't a `UIImage`, so shouldn't be called image
// use personImageView instead
let personImage: UIImageView
// this isn't a `String`, so it should be `textLabel`
let text: UILabel
// `animation` is not clearly a time interval
// use `animationDuration` or `animationTimeInterval` instead
let animation: TimeInterval
// this is not obviously a `String`
// use `transitionText` or `transitionString` instead
let transition: String
// this is a view controller - not a view
let popupView: UIViewController
// as mentioned previously, we don't want to use abbreviations, so don't use
// `VC` instead of `ViewController`
let popupVC: UIViewController
// even though this is still technically a `UIViewController`, this property
// should indicate that we are working with a *Table* View Controller
let popupViewController: UITableViewController
// for the sake of consistency, we should put the type name at the end of the
// property name and not at the start
@IBOutlet weak var btnSubmit: UIButton!
@IBOutlet weak var buttonSubmit: UIButton!
// we should always have a type in the property name when dealing with outlets
// for example, here, we should have `firstNameLabel` instead
@IBOutlet weak var firstName: UILabel!
} |
-
2.10 When naming function arguments, make sure that the function can be read easily to understand the purpose of each argument.
-
2.11 As per Apple's API Design Guidelines, a
protocol
should be named as nouns if they describe what something is doing (e.g.Collection
) and using the suffixesable
,ible
, oring
if it describes a capability (e.g.Equatable
,ProgressReporting
). If neither of those options makes sense for your use case, you can add aProtocol
suffix to the protocol's name as well. Some exampleprotocol
s are below.
// here, the name is a noun that describes what the protocol does
protocol TableViewSectionProvider {
func rowHeight(at row: Int) -> CGFloat
var numberOfRows: Int { get }
/* ... */
}
// here, the protocol is a capability, and we name it appropriately
protocol Loggable {
func logCurrentState()
/* ... */
}
// suppose we have an `InputTextView` class, but we also want a protocol
// to generalize some of the functionality - it might be appropriate to
// use the `Protocol` suffix here
protocol InputTextViewProtocol {
func sendTrackingEvent()
func inputText() -> String
/* ... */
}
-
3.1.1 Prefer
let
tovar
whenever possible. -
3.1.2 Prefer the composition of
map
,filter
,reduce
, etc. over iterating when transforming from one collection to another. Make sure to avoid using closures that have side effects when using these methods.
Good | Not Good |
---|---|
let stringOfInts = [1, 2, 3].flatMap { String($0) }
// ["1", "2", "3"] |
var stringOfInts: [String] = []
for integer in [1, 2, 3] {
stringOfInts.append(String(integer))
} |
Good | Not Good |
---|---|
let evenNumbers = [4, 8, 15, 16, 23, 42].filter { $0 % 2 == 0 }
// [4, 8, 16, 42] |
var evenNumbers: [Int] = []
for integer in [4, 8, 15, 16, 23, 42] {
if integer % 2 == 0 {
evenNumbers.append(integer)
}
} |
-
3.1.3 Prefer not declaring types for constants or variables if they can be inferred anyway.
-
3.1.4 If a function returns multiple values, prefer returning a tuple to using
inout
arguments (it’s best to use labeled tuples for clarity on what you’re returning if it is not otherwise obvious). If you use a certain tuple more than once, consider using atypealias
. If you’re returning 3 or more items in a tuple, consider using astruct
orclass
instead.
func pirateName() -> (firstName: String, lastName: String) {
return ("Guybrush", "Threepwood")
}
let name = pirateName()
let firstName = name.firstName
let lastName = name.lastName
-
3.1.5 Be wary of retain cycles when creating delegates/protocols for your classes; typically, these properties should be declared
weak
. -
3.1.6 Be careful when calling
self
directly from an escaping closure as this can cause a retain cycle - use a capture list when this might be the case:
myFunctionWithEscapingClosure() { [weak self] (error) -> Void in
// you can do this
self?.doSomething()
// or you can do this
guard let strongSelf = self else {
return
}
strongSelf.doSomething()
}
-
3.1.7 Don't use labeled breaks.
-
3.1.8 Don't place parentheses around control flow predicates.
Good | Not Good |
---|---|
if x == y {
/* ... */
} |
if (x == y) {
/* ... */
} |
- 3.1.9 Avoid writing out an
enum
type where possible - use shorthand.
Good | Not Good |
---|---|
imageView.setImageWithURL(url, type: .person) |
imageView.setImageWithURL(url, type: AsyncImageView.Type.person) |
- 3.1.10 Don’t use shorthand for class methods since it is generally more difficult to infer the context from class methods as opposed to
enums
.
Good | Not Good |
---|---|
imageView.backgroundColor = UIColor.white |
imageView.backgroundColor = .white |
-
3.1.11 Prefer not writing
self.
unless it is required. -
3.1.12 When writing methods, keep in mind whether the method is intended to be overridden or not. If not, mark it as
final
, though keep in mind that this will prevent the method from being overwritten for testing purposes. In general,final
methods result in improved compilation times, so it is good to use this when applicable. Be particularly careful, however, when applying thefinal
keyword in a library since it is non-trivial to change something to be non-final
in a library as opposed to have changing something to be non-final
in your local project. -
3.1.13 When using a statement such as
else
,catch
, etc. that follows a block, put this keyword on the same line as the block. Again, we are following the 1TBS style here. Exampleif
/else
anddo
/catch
code is below.
if someBoolean {
// do something
} else {
// do something else
}
do {
let fileContents = try readFile("filename.txt")
} catch {
print(error)
}
-
3.1.14 Prefer
static
toclass
when declaring a function or property that is associated with a class as opposed to an instance of that class. Only useclass
if you specifically need the functionality of overriding that function or property in a subclass, though consider using aprotocol
to achieve this instead. -
3.1.15 If you have a function that takes no arguments, has no side effects, and returns some object or value, prefer using a computed property instead.
-
3.1.16 For the purpose of namespacing a set of
static
functions and/orstatic
properties, prefer using a caselessenum
over aclass
or astruct
. This way, you don't have to add aprivate init() { }
to the container.
- 3.2.1 Write the access modifier keyword first if it is needed.
Good | Not Good |
---|---|
private static let myPrivateNumber: Int |
static private let myPrivateNumber: Int |
- 3.2.2 The access modifier keyword should not be on a line by itself - keep it inline with what it is describing.
Good | Not Good |
---|---|
open class Pirate {
/* ... */
} |
open
class Pirate {
/* ... */
} |
-
3.2.3 In general, do not write the
internal
access modifier keyword since it is the default. -
3.2.4 If a property needs to be accessed by unit tests, you will have to make it
internal
to use@testable import ModuleName
. If a property should be private, but you declare it to beinternal
for the purposes of unit testing, make sure you add an appropriate bit of documentation commenting that explains this. You can make use of the- warning:
markup syntax for clarity as shown below.
/**
This property defines the pirate's name.
- warning: Not `private` for `@testable`.
*/
let pirateName = "LeChuck"
-
3.2.5 Prefer
private
tofileprivate
where possible. -
3.2.6 When choosing between
public
andopen
, preferopen
if you intend for something to be subclassable outside of a given module andpublic
otherwise. Note that anythinginternal
and above can be subclassed in tests by using@testable import
, so this shouldn't be a reason to useopen
. In general, lean towards being a bit more liberal with usingopen
when it comes to libraries, but a bit more conservative when it comes to modules in a codebase such as an app where it is easy to change things in multiple modules simultaneously.
Prefer creating named functions to custom operators.
If you want to introduce a custom operator, make sure that you have a very good reason why you want to introduce a new operator into global scope as opposed to using some other construct.
You can override existing operators to support new types (especially ==
). However, your new definitions must preserve the semantics of the operator. For example, ==
must always test equality and return a boolean.
-
3.4.1 When using a switch statement that has a finite set of possibilities (
enum
), do NOT include adefault
case. Instead, place unused cases at the bottom and use thebreak
keyword to prevent execution. -
3.4.2 Since
switch
cases in Swift break by default, do not include thebreak
keyword if it is not needed. -
3.4.3 The
case
statements should line up with theswitch
statement itself as per default Swift standards. -
3.4.4 When defining a case that has an associated value, make sure that this value is appropriately labeled as opposed to just types (e.g.
case Hunger(hungerLevel: Int)
instead ofcase Hunger(Int)
).
enum Problem {
case attitude
case hair
case hunger(hungerLevel: Int)
}
func handleProblem(problem: Problem) {
switch problem {
case .attitude:
print("At least I don't have a hair problem.")
case .hair:
print("Your barber didn't know when to stop.")
case .hunger(let hungerLevel):
print("The hunger level is \(hungerLevel).")
}
}
-
3.4.5 Prefer lists of possibilities (e.g.
case 1, 2, 3:
) to using thefallthrough
keyword where possible). -
3.4.6 If you have a default case that shouldn't be reached, preferably throw an error (or handle it some other similar way such as asserting).
func handleDigit(_ digit: Int) throws {
switch digit {
case 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:
print("Yes, \(digit) is a digit!")
default:
throw Error(message: "The given number was not a digit.")
}
}
-
3.5.1 The only time you should be using implicitly unwrapped optionals is with
@IBOutlet
s. In every other case, it is better to use a non-optional or regular optional property. Yes, there are cases in which you can probably "guarantee" that the property will never benil
when used, but it is better to be safe and consistent. Similarly, don't use force unwraps. -
3.5.2 Don't use
as!
ortry!
. -
3.5.3 If you don't plan on actually using the value stored in an optional, but need to determine whether or not this value is
nil
, explicitly check this value againstnil
as opposed to usingif let
syntax.
Good | Not Good |
---|---|
if someOptional != nil {
// do something
} |
if let _ = someOptional {
// do something
} |
- 3.5.4 Don't use
unowned
. You can think ofunowned
as somewhat of an equivalent of aweak
property that is implicitly unwrapped (thoughunowned
has slight performance improvements on account of completely ignoring reference counting). Since we don't ever want to have implicit unwraps, we similarly don't wantunowned
properties.
Good | Not Good |
---|---|
weak var parentViewController: UIViewController? |
weak var parentViewController: UIViewController!
unowned var parentViewController: UIViewController |
- 3.5.5 When unwrapping optionals, use the same name for the unwrapped constant or variable where appropriate.
guard let myValue = myValue else {
return
}
When implementing protocols, there are two ways of organizing your code:
- Using
// MARK:
comments to separate your protocol implementation from the rest of your code - Using an extension outside your
class
/struct
implementation code, but in the same source file
Keep in mind that when using an extension, however, the methods in the extension can't be overridden by a subclass, which can make testing difficult. If this is a common use case, it might be better to stick with method #1 for consistency. Otherwise, method #2 allows for cleaner separation of concerns.
Even when using method #2, add // MARK:
statements anyway for easier readability in Xcode's method/property/class/etc. list UI.
- 3.7.1 If making a read-only, computed property, provide the getter without the
get {}
around it.
var computedProperty: String {
if someBool {
return "I'm a mighty pirate!"
}
return "I'm selling these fine leather jackets."
}
- 3.7.2 When using
get {}
,set {}
,willSet
, anddidSet
, indent these blocks. - 3.7.3 Though you can create a custom name for the new or old value for
willSet
/didSet
andset
, use the standardnewValue
/oldValue
identifiers that are provided by default.
var storedProperty: String = "I'm selling these fine leather jackets." {
willSet {
print("will set to \(newValue)")
}
didSet {
print("did set from \(oldValue) to \(storedProperty)")
}
}
var computedProperty: String {
get {
if someBool {
return "I'm a mighty pirate!"
}
return storedProperty
}
set {
storedProperty = newValue
}
}
- 3.7.4 You can declare a singleton property as follows:
class PirateManager {
static let shared = PirateManager()
/* ... */
}
- 3.8.1 If the types of the parameters are obvious, it is OK to omit the type name, but being explicit is also OK. Sometimes readability is enhanced by adding clarifying detail and sometimes by taking repetitive parts away - use your best judgment and be consistent.
// omitting the type
doSomethingWithClosure() { response in
print(response)
}
// explicit type
doSomethingWithClosure() { response: NSURLResponse in
print(response)
}
// using shorthand in a map statement
[1, 2, 3].flatMap { String($0) }
- 3.8.2 If specifying a closure as a type, you don’t need to wrap it in parentheses unless it is required (e.g. if the type is optional or the closure is within another closure). Always wrap the arguments in the closure in a set of parentheses - use
()
to indicate no arguments and useVoid
to indicate that nothing is returned.
let completionBlock: (Bool) -> Void = { (success) in
print("Success? \(success)")
}
let completionBlock: () -> Void = {
print("Completed!")
}
let completionBlock: (() -> Void)? = nil
-
3.8.3 Keep parameter names on same line as the opening brace for closures when possible without too much horizontal overflow (i.e. ensure lines are less than 160 characters).
-
3.8.4 Use trailing closure syntax unless the meaning of the closure is not obvious without the parameter name (an example of this could be if a method has parameters for success and failure closures).
// trailing closure
doSomething(for: 1.0) { (parameter1) in
print("Parameter 1 is \(parameter1)")
}
// no trailing closure
doSomething(
for: 1.0,
success: { (parameter1) in
print("Success with \(parameter1)")
},
failure: { (parameter1) in
print("Failure with \(parameter1)")
}
)
-
3.9.1 In general, avoid accessing an array directly with subscripts. When possible, use accessors such as
.first
or.last
, which are optional and won’t crash. Prefer using afor item in items
syntax when possible as opposed to something likefor i in 0 ..< items.count
. If you need to access an array subscript directly, make sure to do proper bounds checking. You can usefor (index, value) in items.enumerated()
to get both the index and the value. -
3.9.2 Never use the
+=
or+
operator to append/concatenate to arrays. Instead, use.append()
or.append(contentsOf:)
as these are far more performant (at least with respect to compilation) in Swift's current state. If you are declaring an array that is based on other arrays and want to keep it immutable, instead oflet myNewArray = arr1 + arr2
, uselet myNewArray = [arr1, arr2].flatten()
.
Suppose a function myFunction
is supposed to return a String
, however, at some point it can run into an error. A common approach is to have this function return an optional String?
where we return nil
if something went wrong.
Example:
func readFile(named filename: String) -> String? {
guard let file = openFile(named: filename) else {
return nil
}
let fileContents = file.read()
file.close()
return fileContents
}
func printSomeFile() {
let filename = "somefile.txt"
guard let fileContents = readFile(named: filename) else {
print("Unable to open file \(filename).")
return
}
print(fileContents)
}
Instead, we should be using Swift's try
/catch
behavior when it is appropriate to know the reason for the failure.
You can use a struct
such as the following:
struct Error: Swift.Error {
public let file: StaticString
public let function: StaticString
public let line: UInt
public let message: String
public init(
message: String,
file: StaticString = #file,
function: StaticString = #function,
line: UInt = #line
) {
self.file = file
self.function = function
self.line = line
self.message = message
}
}
Example usage:
func readFile(named filename: String) throws -> String {
guard let file = openFile(named: filename) else {
throw Error(message: "Unable to open file named \(filename).")
}
let fileContents = file.read()
file.close()
return fileContents
}
func printSomeFile() {
do {
let fileContents = try readFile(named: filename)
print(fileContents)
} catch {
print(error)
}
}
There are some exceptions in which it does make sense to use an optional as opposed to error handling. When the result should semantically potentially be nil
as opposed to something going wrong while retrieving the result, it makes sense to return an optional instead of using error handling.
In general, if a method can "fail", and the reason for the failure is not immediately obvious if using an optional return type, it probably makes sense for the method to throw an error.
- 3.11.1 In general, we prefer to use an "early return" strategy where applicable as opposed to nesting code in
if
statements. Usingguard
statements for this use-case is often helpful and can improve the readability of the code.
Good | Not Good |
---|---|
func eatDoughnut(at index: Int) {
guard index >= 0 && index < doughnuts.count else {
// return early because the index is out of bounds
return
}
let doughnut = doughnuts[index]
eat(doughnut)
} |
func eatDoughnut(at index: Int) {
if index >= 0 && index < doughnuts.count {
let doughnut = doughnuts[index]
eat(doughnut)
}
} |
- 3.11.2 When unwrapping optionals, prefer
guard
statements as opposed toif
statements to decrease the amount of nested indentation in your code.
Good | Not Good | Bad |
---|---|---|
guard let monkeyIsland = monkeyIsland else {
return
}
bookVacation(on: monkeyIsland)
bragAboutVacation(at: monkeyIsland) |
if let monkeyIsland = monkeyIsland {
bookVacation(on: monkeyIsland)
bragAboutVacation(at: monkeyIsland)
} |
if monkeyIsland == nil {
return
}
bookVacation(on: monkeyIsland!)
bragAboutVacation(at: monkeyIsland!) |
- 3.11.3 When deciding between using an
if
statement or aguard
statement when unwrapping optionals is not involved, the most important thing to keep in mind is the readability of the code. There are many possible cases here, such as depending on two different booleans, a complicated logical statement involving multiple comparisons, etc., so in general, use your best judgement to write code that is readable and consistent. If you are unsure whetherguard
orif
is more readable or they seem equally readable, prefer usingguard
.
// an `if` statement is readable here
if operationFailed {
return
}
// a `guard` statement is readable here
guard isSuccessful else {
return
}
// double negative logic like this can get hard to read - i.e. don't do this
guard !operationFailed else {
return
}
- 3.11.4 If choosing between two different states, it makes more sense to use an
if
statement as opposed to aguard
statement.
Good | Not Good |
---|---|
if isFriendly {
print("Hello, nice to meet you!")
} else {
print("You have the manners of a beggar.")
} |
guard isFriendly else {
print("You have the manners of a beggar.")
return
}
print("Hello, nice to meet you!") |
- 3.11.5 You should also use
guard
only if a failure should result in exiting the current context. Below is an example in which it makes more sense to use twoif
statements instead of using twoguard
s - we have two unrelated conditions that should not block one another.
if let monkeyIsland = monkeyIsland {
bookVacation(onIsland: monkeyIsland)
}
if let woodchuck = woodchuck, canChuckWood(woodchuck) {
woodchuck.chuckWood()
}
- 3.11.6 Often, we can run into a situation in which we need to unwrap multiple optionals using
guard
statements. In general, combine unwraps into a singleguard
statement if handling the failure of each unwrap is identical (e.g. just areturn
,break
,continue
,throw
, or some other@noescape
).
// combined because we just return
guard let thingOne = thingOne,
let thingTwo = thingTwo,
let thingThree = thingThree else {
return
}
// separate statements because we handle a specific error in each case
guard let thingOne = thingOne else {
throw Error(message: "Unwrapping thingOne failed.")
}
guard let thingTwo = thingTwo else {
throw Error(message: "Unwrapping thingTwo failed.")
}
guard let thingThree = thingThree else {
throw Error(message: "Unwrapping thingThree failed.")
}
- 3.11.7 Don’t use one-liners for
guard
statements.
Good | Not Good |
---|---|
guard let thingOne = thingOne else {
return
} |
guard let thingOne = thingOne else { return } |
If a function is more complicated than a simple O(1) operation, you should generally consider adding a doc comment for the function since there could be some information that the method signature does not make immediately obvious. If there are any quirks to the way that something was implemented, whether technically interesting, tricky, not obvious, etc., this should be documented. Documentation should be added for complex classes/structs/enums/protocols and properties. All public
functions/classes/properties/constants/structs/enums/protocols/etc. should be documented as well (provided, again, that their signature/name does not make their meaning/functionality immediately obvious).
After writing a doc comment, you should option click the function/property/class/etc. to make sure that everything is formatted correctly.
Be sure to check out the full set of features available in Swift's comment markup described in Apple's Documentation.
Guidelines:
-
4.1.1 160 character column limit (like the rest of the code).
-
4.1.2 Even if the doc comment takes up one line, use block (
/** */
). -
4.1.3 Do not prefix each additional line with a
*
. -
4.1.4 Use the new
- parameter
syntax as opposed to the old:param:
syntax (make sure to use lower caseparameter
and notParameter
). See the documentation on Swift Markup for more details on how this is formatted. -
4.1.5 If you’re going to be documenting the parameters/returns/throws of a method, document all of them, even if some of the documentation ends up being somewhat repetitive (this is preferable to having the documentation look incomplete). Sometimes, if only a single parameter warrants documentation, it might be better to just mention it in the description instead.
-
4.1.6 For complicated classes, describe the usage of the class with some potential examples as seems appropriate. Remember that markdown syntax is valid in Swift's comment docs. Newlines, lists, etc. are therefore appropriate.
/**
## Feature Support
This class does some awesome things. It supports:
- Feature 1
- Feature 2
- Feature 3
## Examples
Here is an example use case indented by four spaces because that indicates a
code block:
let myAwesomeThing = MyAwesomeClass()
myAwesomeThing.makeMoney()
## Warnings
There are some things you should be careful of:
1. Thing one
2. Thing two
3. Thing three
*/
class MyAwesomeClass {
/* ... */
}
- 4.1.7 When mentioning code, use code ticks - `
/**
This does something with a `UIViewController`, perchance.
- warning: Make sure that `someValue` is `true` before running this function.
*/
func myFunction() {
/* ... */
}
- 4.1.8 When writing doc comments, prefer brevity where possible.
- 4.2.1 Always leave a space after
//
. - 4.2.2 Always leave comments on their own line.
- 4.2.3 When using
// MARK: - whatever
, leave two newlines after the comment.
class Pirate {
// MARK: - instance properties
private let pirateName: String
// MARK: - initialization
init() {
/* ... */
}
}