Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update Baltic Editor #4987

Merged
merged 12 commits into from
Jan 1, 2025
359 changes: 85 additions & 274 deletions solutions/platinum/baltic-15-editor.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ author: Benjamin Qi

[Official Analysis](https://boi.cses.fi/files/boi2015_solutions.zip)

**Time Complexity:** $\mathcal O(N \log N)$.
## Explanation

Let `lev[x]=max(0,-a[x])`.

Expand Down Expand Up @@ -38,292 +38,103 @@ So the solution is to maintain the active path for every `i`. If there exists an
operation with level 0 on the active path for `i`, then its state is the answer
for `i`; otherwise, the answer for `i` is 0.

```cpp
#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;
using db = double;
using str = string; // yay python!

using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;

using vi = vector<int>;
using vb = vector<bool>;
using vl = vector<ll>;
using vd = vector<db>;
using vs = vector<str>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vpd = vector<pd>;

#define tcT template <class T
#define tcTU tcT, class U
// ^ lol this makes everything look weird but I'll try it
tcT > using V = vector<T>;
tcT, size_t SZ > using AR = array<T, SZ>;
tcT > using PR = pair<T, T>;

// pairs
#define mp make_pair
#define f first
#define s second

// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define ft front()
#define bk back()
#define pb push_back
#define eb emplace_back
#define pf push_front

#define lb lower_bound
#define ub upper_bound
tcT > int lwb(V<T> &a, const T &b) { return int(lb(all(a), b) - bg(a)); }

// loops
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define F0R(i, a) FOR(i, 0, a)
#define ROF(i, a, b) for (int i = (b) - 1; i >= (a); --i)
#define R0F(i, a) ROF(i, 0, a)
#define trav(a, x) for (auto &a : x)

const int MOD = 1e9 + 7; // 998244353;
const int MX = 2e5 + 5;
const ll INF = 1e18; // not too close to LLONG_MAX
const ld PI = acos((ld)-1);
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;

// bitwise ops
// also see https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set
constexpr int bits(int x) { // assert(x >= 0); // make C++11 compatible until
// USACO updates ...
return x == 0 ? 0 : 31 - __builtin_clz(x);
} // floor(log2(x))
constexpr int p2(int x) { return 1 << x; }
constexpr int msk2(int x) { return p2(x) - 1; }

ll cdiv(ll a, ll b) {
return a / b + ((a ^ b) > 0 && a % b);
} // divide a by b rounded up
ll fdiv(ll a, ll b) {
return a / b - ((a ^ b) < 0 && a % b);
} // divide a by b rounded down

tcT > bool ckmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT > bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }

tcTU > T fstTrue(T lo, T hi, U f) {
hi++;
assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo) / 2;
f(mid) ? hi = mid : lo = mid + 1;
}
return lo;
}
tcTU > T lstTrue(T lo, T hi, U f) {
lo--;
assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo + 1) / 2;
f(mid) ? lo = mid : hi = mid - 1;
}
return lo;
}
tcT > void remDup(vector<T> &v) { // sort and remove duplicates
sort(all(v));
v.erase(unique(all(v)), end(v));
}
tcTU > void erase(T &t, const U &u) { // don't erase
auto it = t.find(u);
assert(it != end(t));
t.erase(it);
} // element that doesn't exist from (multi)set

// INPUT
#define tcTUU tcT, class... U
tcT > void re(complex<T> &c);
tcTU > void re(pair<T, U> &p);
tcT > void re(V<T> &v);
tcT, size_t SZ > void re(AR<T, SZ> &a);

tcT > void re(T &x) { cin >> x; }
void re(db &d) {
str t;
re(t);
d = stod(t);
}
void re(ld &d) {
str t;
re(t);
d = stold(t);
}
tcTUU > void re(T &t, U &...u) {
re(t);
re(u...);
}

tcT > void re(complex<T> &c) {
T a, b;
re(a, b);
c = {a, b};
}
tcTU > void re(pair<T, U> &p) { re(p.f, p.s); }
tcT > void re(V<T> &x) { trav(a, x) re(a); }
tcT, size_t SZ > void re(AR<T, SZ> &x) { trav(a, x) re(a); }
tcT > void rv(int n, V<T> &x) {
x.rsz(n);
re(x);
}
## Implementation

// TO_STRING
#define ts to_string
str ts(char c) { return str(1, c); }
str ts(const char *s) { return (str)s; }
str ts(str s) { return s; }
str ts(bool b) {
#ifdef LOCAL
return b ? "true" : "false";
#else
return ts((int)b);
#endif
}
tcT > str ts(complex<T> c) {
stringstream ss;
ss << c;
return ss.str();
}
str ts(V<bool> v) {
str res = "{";
F0R(i, sz(v)) res += char('0' + v[i]);
res += "}";
return res;
}
template <size_t SZ> str ts(bitset<SZ> b) {
str res = "";
F0R(i, SZ) res += char('0' + b[i]);
return res;
}
tcTU > str ts(pair<T, U> p);
tcT > str ts(T v) { // containers with begin(), end()
#ifdef LOCAL
bool fst = 1;
str res = "{";
for (const auto &x : v) {
if (!fst) res += ", ";
fst = 0;
res += ts(x);
}
res += "}";
return res;
#else
bool fst = 1;
str res = "";
for (const auto &x : v) {
if (!fst) res += " ";
fst = 0;
res += ts(x);
}
return res;
**Time Complexity:** $\mathcal O(N \log N)$.

#endif
}
tcTU > str ts(pair<T, U> p) {
#ifdef LOCAL
return "(" + ts(p.f) + ", " + ts(p.s) + ")";
#else
return ts(p.f) + " " + ts(p.s);
#endif
}
<LanguageSection>
<CPPSection>

// OUTPUT
tcT > void pr(T x) { cout << ts(x); }
tcTUU > void pr(const T &t, const U &...u) {
pr(t);
pr(u...);
}
void ps() { pr("\n"); } // print w/ spaces
tcTUU > void ps(const T &t, const U &...u) {
pr(t);
if (sizeof...(u)) pr(" ");
ps(u...);
}
```cpp
#include <cassert>
#include <iostream>

// DEBUG
void DBG() { cerr << "]" << endl; }
tcTUU > void DBG(const T &t, const U &...u) {
cerr << ts(t);
if (sizeof...(u)) cerr << ", ";
DBG(u...);
}
#ifdef LOCAL // compile with -DLOCAL, chk -> fake assert
#define dbg(...) \
cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#define chk(...) \
if (!(__VA_ARGS__)) \
cerr << "Line(" << __LINE__ << ") -> function(" << __FUNCTION__ \
<< ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", \
exit(0);
#else
#define dbg(...) 0
#define chk(...) 0
#endif

void setPrec() { cout << fixed << setprecision(15); }
void unsyncIO() { cin.tie(0)->sync_with_stdio(0); }
// FILE I/O
void setIn(str s) { freopen(s.c_str(), "r", stdin); }
void setOut(str s) { freopen(s.c_str(), "w", stdout); }
void setIO(str s = "") {
unsyncIO();
setPrec();
// cin.exceptions(cin.failbit);
// throws exception when do smth illegal
// ex. try to read letter into int
if (sz(s)) setIn(s + ".in"), setOut(s + ".out"); // for USACO
}
const int MAX_N = 3e5 + 1;
const int MAX_D = 19; // ceil(log2(3*(10^5)))

int state[MX], par[MX][19], lev[MX];
int state[MAX_N], par[MAX_N][MAX_D], lev[MAX_N];

int getPar(int x,
int maxLev) { // get last op on active path of x with lev <= maxLev
if (lev[x] <= maxLev) return x;
R0F(i, 19) if (lev[par[x][i]] > maxLev) x = par[x][i];
/** get last op on active path of x with lev <= max_lev */
int get_par(int x, int max_lev) {
if (lev[x] <= max_lev) { return x; }
for (int i = MAX_D - 1; i >= 0; i--) {
if (lev[par[x][i]] > max_lev) { x = par[x][i]; }
}
return par[x][0];
}

int main() {
setIO();
int n;
re(n);
FOR(y, 1, n + 1) {
re(state[y]);
if (state[y] < 0) {
lev[y] = -state[y];
int z = getPar(y - 1, lev[y] - 1);
std::cin >> n;
for (int i = 1; i <= n; i++) {
std::cin >> state[i];
if (state[i] < 0) {
lev[i] = -state[i];
int z = get_par(i - 1, lev[i] - 1);
assert(z); // must be something to undo
par[y][0] = getPar(z - 1, lev[y] - 1);
assert(lev[y] > lev[par[y][0]]); // levels of ops in active path
// are strictly decreasing
FOR(j, 1, 19)
par[y][j] = par[par[y][j - 1]][j - 1]; // prep binary jumps
par[i][0] = get_par(z - 1, lev[i] - 1);

// levels of ops in active path are strictly decreasing
assert(lev[i] > lev[par[i][0]]);

for (int j = 1; j < MAX_D; j++) {
par[i][j] = par[par[i][j - 1]][j - 1]; // prepare binary jumps
}
}
ps(state[getPar(y, 0)]);
// current active path is y, par[y], par[par[y]], ...
std::cout << state[get_par(i, 0)] << '\n';
// current active path is i, par[i], par[par[i]], ...
}
}
```

</CPPSection>
<PySection>

```py
import math

MAX_N = 300001
SansPapyrus683 marked this conversation as resolved.
Show resolved Hide resolved
MAX_D = math.ceil(math.log2(MAX_N))

state = [0] * MAX_N
par = [[0] * MAX_D for _ in range(MAX_N)]
lev = [0] * MAX_N


def get_par(x: int, max_lev: int) -> int:
"""get last op on active path of x with lev <= max_lev"""
if lev[x] <= max_lev:
return x
for i in range(MAX_D - 1, -1, -1):
if lev[par[x][i]] > max_lev:
x = par[x][i]
return par[x][0]


n = int(input())

for i in range(1, n + 1):
state[i] = int(input())

if state[i] < 0:
lev[i] = -state[i]
z = get_par(i - 1, lev[i] - 1)

# must be something to undo
assert z > 0

par[i][0] = get_par(z - 1, lev[i] - 1)

# levels of ops in active path are strictly decreasing
assert lev[i] > lev[par[i][0]]

# prepare binary jumps
for j in range(1, MAX_D):
par[i][j] = par[par[i][j - 1]][j - 1]

# current active path is i, par[i], par[par[i]], ...
print(state[get_par(i, 0)])
```

</PySection>
</LanguageSection>
Loading