-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Jordan Stomps
committed
Oct 31, 2022
1 parent
70a0f88
commit aa881c0
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
# diagnostics | ||
import numpy as np | ||
from datetime import datetime, timedelta | ||
# testing models | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.preprocessing import StandardScaler | ||
import tests.test_data as test_data | ||
# hyperopt | ||
from hyperopt.pyll.base import scope | ||
from hyperopt import hp | ||
# models | ||
from models.SSML.CoTraining import CoTraining | ||
# testing write | ||
import joblib | ||
import os | ||
|
||
# initialize sample data | ||
start_date = datetime(2019, 2, 2) | ||
delta = timedelta(seconds=1) | ||
timestamps = np.arange(start_date, | ||
start_date + (test_data.timesteps * delta), | ||
delta).astype('datetime64[s]').astype('float64') | ||
|
||
live = np.full((len(timestamps),), test_data.livetime) | ||
sample_val = 1.0 | ||
spectra = np.full((len(timestamps), test_data.energy_bins), | ||
np.full((1, test_data.energy_bins), sample_val)) | ||
# setting up for rejected null hypothesis | ||
rejected_H0_time = np.random.choice(spectra.shape[0], | ||
test_data.timesteps//2, | ||
replace=False) | ||
spectra[rejected_H0_time] = 100.0 | ||
|
||
labels = np.full((spectra.shape[0],), 0) | ||
labels[rejected_H0_time] = 1 | ||
|
||
|
||
def test_CoTraining(): | ||
# test saving model input parameters | ||
params = {'max_iter': 2022, 'tol': 0.5, 'C': 5.0} | ||
model = CoTraining(params=params) | ||
|
||
assert model.model1.max_iter == params['max_iter'] | ||
assert model.model1.tol == params['tol'] | ||
assert model.model1.C == params['C'] | ||
|
||
assert model.model2.max_iter == params['max_iter'] | ||
assert model.model2.tol == params['tol'] | ||
assert model.model2.C == params['C'] | ||
|
||
X, Ux, y, Uy = train_test_split(spectra, | ||
labels, | ||
test_size=0.5, | ||
random_state=0) | ||
X_train, X_test, y_train, y_test = train_test_split(X, | ||
y, | ||
test_size=0.2, | ||
random_state=0) | ||
|
||
# normalization | ||
normalizer = StandardScaler() | ||
normalizer.fit(X_train) | ||
|
||
X_train = normalizer.transform(X_train) | ||
X_test = normalizer.transform(X_test) | ||
Ux = normalizer.transform(Ux) | ||
|
||
# default behavior | ||
model = CoTraining(params=None, random_state=0) | ||
model.train(X_train, y_train, Ux) | ||
|
||
# testing train and predict methods | ||
pred, acc, *_ = model.predict(X_test, y_test) | ||
|
||
assert acc > 0.7 | ||
np.testing.assert_equal(pred, y_test) | ||
|
||
# testing hyperopt optimize methods | ||
space = {'max_iter': scope.int(hp.quniform('max_iter', | ||
10, | ||
10000, | ||
10)), | ||
'tol': hp.loguniform('tol', 1e-5, 1e-3), | ||
'C': hp.uniform('C', 1.0, 1000.0), | ||
'n_samples': scope.int(hp.quniform('n_samples', | ||
1, | ||
20, | ||
1)), | ||
'seed': 0 | ||
} | ||
data_dict = {'trainx': X_train, | ||
'testx': X_test, | ||
'trainy': y_train, | ||
'testy': y_test, | ||
'Ux': Ux | ||
} | ||
model.optimize(space, data_dict, max_evals=2, verbose=True) | ||
|
||
assert model.best['accuracy'] >= model.worst['accuracy'] | ||
assert model.best['status'] == 'ok' | ||
|
||
# testing model plotting method | ||
filename = 'test_plot' | ||
model.plot_cotraining(model1_accs=model.best['model1_acc_history'], | ||
model2_accs=model.best['model2_acc_history'], | ||
filename=filename) | ||
os.remove(filename+'.png') | ||
|
||
# testing model write to file method | ||
filename = 'test_LogReg' | ||
ext = '.joblib' | ||
model.save(filename) | ||
model_file = joblib.load(filename+ext) | ||
assert model_file.best['params'] == model.best['params'] | ||
|
||
os.remove(filename+ext) |