Skip to content
/ emblaze Public

Interactive Jupyter notebook widget for visually comparing embedding spaces.

License

Notifications You must be signed in to change notification settings

cmudig/emblaze

Emblaze - Interactive Embedding Comparison

Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bundles an easy-to-use Python API for performing dimensionality reduction on multiple sets of embedding data (including aligning the results for easier comparison), and a full-featured interactive platform for probing and comparing embeddings that runs within a Jupyter notebook cell. Read the documentation >

Installation

Compatibility Note: Note that this widget has been tested using Python >= 3.7. If you are using JupyterLab, please make sure you are running version 3.0 or higher. The widget currently does not support displaying in the VS Code interactive notebook environment.

Install Emblaze using pip:

pip install emblaze

The widget should work out of the box when you run jupyter lab (see example code below).

Jupyter Notebook note: If you are using Jupyter Notebook 5.2 or earlier, you may also need to enable the nbextension:

jupyter nbextension enable --py --sys-prefix emblaze

Running as a Standalone App

It's most convenient to use Emblaze as a Jupyter widget, but it can also be run as a standalone web application for small-scale hosting purposes. To do so, run the Flask server using:

python -m emblaze.server

See "Standalone App Development" below to learn how to import data into the standalone tool.

Examples

Please see examples/example.ipynb to try using the Emblaze widget on the Boston housing prices or MNIST (TensorFlow import required) datasets.

Example 1: Multiple projections of the same embedding dataset. This can reveal areas of variation in the dimensionality reduction process, since tSNE and UMAP are randomized algorithms.

import emblaze
from emblaze.utils import Field, ProjectionTechnique

# X is an n x k array, Y is a length-n array
X, Y = ...

# Represent the high-dimensional embedding
emb = emblaze.Embedding({Field.POSITION: X, Field.COLOR: Y})
# Compute nearest neighbors in the high-D space (for display)
emb.compute_neighbors(metric='cosine')

# Generate UMAP 2D representations - you can pass UMAP parameters to project()
variants = emblaze.EmbeddingSet([
    emb.project(method=ProjectionTechnique.UMAP) for _ in range(10)
])
# Compute neighbors again (to indicate that we want to compare projections)
variants.compute_neighbors(metric='euclidean')

w = emblaze.Viewer(embeddings=variants)
w

Example 2: Multiple embeddings of the same data from different models. This is useful to see how different models embed data differently.

# Xs is a list of n x k arrays corresponding to different embedding spaces
Xs = ...
# Y is a length-n array of labels for color-coding
Y = ...
# List of strings representing the name of each embedding space (e.g.
# "Google News", "Wikipedia", "Twitter"). Omit to use generic names
embedding_names = [...]

# Make high-dimensional embedding objects
embeddings = emblaze.EmbeddingSet([
    emblaze.Embedding({Field.POSITION: X, Field.COLOR: Y}, label=emb_name)
    for X, emb_name in zip(Xs, embedding_names)
])
embeddings.compute_neighbors(metric='cosine')

# Make aligned UMAP
reduced = embeddings.project(method=ProjectionTechnique.ALIGNED_UMAP)

w = emblaze.Viewer(embeddings=reduced)
w

Example 3: Visualizing image data with image thumbnails. The viewer will display image previews for each point as well as its nearest neighbors. (For text data, you can use TextThumbnails to show small pieces of text next to the points.)

# images is an n x 100 x 100 x 3 numpy array of 100x100 RGB images (values from 0-255)
images = ...
thumbnails = emblaze.ImageThumbnails(images)
w = emblaze.Viewer(embeddings=embeddings, thumbnails=thumbnails)
w

You can also visualize embeddings with multimodal labels (i.e. where some points have text labels and others have image labels) by initializing an emblaze.CombinedThumbnails instance with a list of other Thumbnails objects to combine.

See the documentation for more details on defining and configuring comparisons with Emblaze.


Development Installation

Clone repository, then install dependencies:

pip install -r requirements.txt

Install the python package. This will also build the JS packages.

pip install -e .

Run the following commands if you use Jupyter Lab:

jupyter labextension install @jupyter-widgets/jupyterlab-manager --no-build
jupyter labextension install .

Run the following commands if you use Jupyter Notebook:

jupyter nbextension install --sys-prefix --symlink --overwrite --py emblaze
jupyter nbextension enable --sys-prefix --py emblaze

Note that the --symlink flag doesn't work on Windows, so you will here have to run the install command every time that you rebuild your extension. For certain installations you might also need another flag instead of --sys-prefix, but we won't cover the meaning of those flags here.

How to see your changes

Open JupyterLab in watch mode with jupyter lab --watch. Then, in a separate terminal, watch the source directory for changes with npm run watch. After a change to the JavaScript code, you will wait for the build to finish, then refresh your browser. After changing in Python code, you will need to restart the notebook kernel to see your changes take effect.

Standalone App Development

To develop using the standalone app, run npm run watch:standalone in a separate terminal from the Flask server to continuously build the frontend. You will need to reload the page to see your changes.

The standalone application serves datasets stored at the data path that is printed when the Flask server starts (should be something like .../lib/python3.9/site-packages/emblaze/data for the pip-installed version, or .../emblaze/emblaze/data for a local repository). You can add your own datasets by building an EmbeddingSet and (optionally) a Thumbnails object, then saving the results to files in the data directory:

import os, json

dataset_name = "my-dataset"
data_dir = ... # data directory printed by flask server

embeddings = ... # EmbeddingSet object
thumbnails = ... # (Text|Image)Thumbnails object

os.mkdir(os.path.join(data_dir, dataset_name))
with open(os.path.join(data_dir, dataset_name, "data.json"), "w") as file:
    json.dump(embeddings.to_json(), file)
with open(os.path.join(data_dir, dataset_name, "thumbnails.json"), "w") as file:
    json.dump(thumbnails.to_json(), file)

Building Documentation

Install pdoc3: pip install pdoc3

Build documentation:

pdoc --html --force --output-dir docs --template-dir docs/templates emblaze

Deployment

First clean all npm build intermediates:

npm run clean

Bump the widget version in emblaze/_version.py, emblaze/_frontend.py, and package.json if applicable. Then build the notebook widgets and standalone app:

npm run build:all

Run the packaging script to generate the wheel for distribution:

pip install --upgrade build twine
python -m build

Upload to PyPI (replace <VERSION> with the version number):

twine upload dist/emblaze-<VERSION>*

Development Notes

  • Svelte transitions don't seem to work well as they force an expensive re-layout operation. Avoid using them during interactions.

About

Interactive Jupyter notebook widget for visually comparing embedding spaces.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published