generated from cotes2020/chirpy-starter
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Affected files: .obsidian/workspace.json _posts/pool/2024-12-26-小case.md _posts/pool/2024-12-26-微积分.md
- Loading branch information
Showing
3 changed files
with
147 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
--- | ||
title: | ||
author: X | ||
date: 2024-12-26 13:59:58 +0800 | ||
categories: | ||
- coding | ||
tags: | ||
--- | ||
|
||
- `os.sep` 是操作系统的路径分隔符,在 Windows 上是反斜杠 (`\`),在 Unix/Linux/MacOS 系统上是正斜杠 (`/`)。 | ||
|
||
所以可以用`.split(os.sep)`的方式来分割路径,这种方式会比较通用。 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
--- | ||
title: 微积分 | ||
author: X | ||
date: 2024-12-26 14:24:02 +0800 | ||
categories: | ||
- math | ||
tags: | ||
- 自然哲学的数学原理 | ||
--- | ||
参考视频: | ||
[三分钟弄懂微积分](https://www.bilibili.com/video/BV1mb411r7bd/?vd_source=84405b9467efb94cfe7797c37e3fba56) | ||
参考笔记: | ||
[机器学习笔记 -- 数学×微积分入门](https://sunocean.life/blog/blog/2020/09/02/deep-learning-math-calculus) | ||
|
||
- 微分 | ||
- 主要研究两个无穷小量的比值 | ||
- 积分 | ||
- 主要研究无限多的无穷小量之和 | ||
|
||
## 微积分符号定义 | ||
符号定义: $d+var$ 表示某个变量的极小的一点变化。 | ||
|
||
$d$ 和 $∫$ 是可以互相抵消的,因为求导和求积分互为逆运算,这就好比平方和平方根可以抵消一样。 | ||
|
||
积分符号“$∫$” 和 $Σ$ 有相同的意义。 | ||
|
||
例如 $\int_{1}^{2} f(x) \, dx$, 意为 $f(x)$ 与 $dx$ 相乘,这将在坐标系中得到一个极小量(可以看作 $f(x)$ 与 $x$ 轴间的一根细条),将1~2间无数个极小量求和,即为1~2下 $f(x)$ 与 $x$ 轴围成的面积。 | ||
|
||
## 与导数的关系 | ||
|
||
### 导数定义 | ||
对任意函数 $f(x)$ ,它的导数 $f'(x)$ 为 $\displaystyle \frac{df(x)}{dx}\,=\,\frac{f(x+dx)-f(x)}{dx}$ | ||
更精确的表示为,当 $dx$ 无限逼近 $0$ 时, $f'(x)$ 才是真正的导数,也就是说: | ||
$$ | ||
\frac{df(x)}{dx}\,=\,\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} | ||
$$ | ||
在数学上,导数的含义是:经过图像上某一点的切线。 | ||
|
||
### 关系桥梁推导 | ||
微积分基本定理是微积分学中最核心的定理之一,它建立了微分和积分之间的联系。 | ||
|
||
#### 微积分基本定理的第一部分 | ||
|
||
**定理陈述**:设 $f$ 是区间 $[a, b]$ 上的连续函数,定义函数 $F$ 为 | ||
$$ | ||
F(x) = \int_a^x f(t) \, dt | ||
$$ | ||
则 $F$ 在 $[a, b]$ 上可导,并且 | ||
$$ F'(x) = f(x) $$ | ||
即:第一部分定理指明了 $\int_a^x f(t) \, dt$ 为 $f(x)$ 的原函数。 | ||
|
||
**详细证明**: | ||
|
||
1. **定义差商**: | ||
$$ | ||
\frac{F(x + h) - F(x)}{h} = \frac{1}{h} \left( \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt \right) | ||
$$ | ||
2. **利用积分的性质**: | ||
$$ | ||
\int_a^{x+h} f(t) \, dt = \int_a^x f(t) \, dt + \int_x^{x+h} f(t) \, dt | ||
$$ | ||
这里其实也可以直接看作是$\displaystyle \int_a^{x+h} - \int_a^x = \int_x^{x+h}$ | ||
因此, | ||
$$ | ||
\frac{F(x + h) - F(x)}{h} = \frac{1}{h} \int_x^{x+h} f(t) \, dt | ||
$$ | ||
3. **均值定理**: | ||
由于 $f$ 在 $[x, x+h]$ 上连续,根据积分的均值定理,存在 $c \in [x, x+h]$ 使得 | ||
$$\int_x^{x+h} f(t) \, dt = f(c) \cdot h$$ | ||
因此, | ||
$$\frac{F(x + h) - F(x)}{h} = f(c)$$ | ||
4. **取极限**: | ||
当 $h \to 0$ 时, $c \to x$ ,因为 $c$ 在 $[x, x+h]$ 内。由于 $f$ 在 $x$ 处连续, | ||
$$\lim_{h \to 0} f(c) = f(x)$$ | ||
这段就是说,$h \to 0$ 时,相当于这段积分就在 $x$ 点上,那不就是 $c \to x$ 了吗? | ||
因此, | ||
$$F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = f(x)$$ | ||
|
||
#### 微积分基本定理的第二部分 | ||
|
||
**定理陈述**:设 $f$ 是区间 $[a, b]$ 上的连续函数,且 $F$ 是 $f$ 的一个原函数(即 $F'(x) = f(x)$ ),则 | ||
$$\int_a^b f(x) \, dx = F(b) - F(a)$$ | ||
|
||
**详细证明**: | ||
|
||
1. **定义辅助函数**: | ||
设 $G(x) = \int_a^x f(t) \, dt$。根据第一部分,我们知道 $G'(x) = f(x)$。 | ||
|
||
2. **原函数的性质**: | ||
由于 $F$ 也是 $f$ 的一个原函数,即 $F'(x) = f(x)$,因此 $F(x)$ 和 $G(x)$只相差一个常数 $C$ : | ||
$$ | ||
F(x) = G(x) + C | ||
$$ | ||
|
||
3. **确定常数 $C$**: | ||
由于 $G(a) = \int_a^a f(t) \, dt = 0$,我们有 | ||
$$ | ||
F(a) = G(a) + C = 0 + C = C | ||
$$ | ||
因此, | ||
$$ | ||
C = F(a) | ||
$$ | ||
所以, | ||
$$ | ||
F(x) = G(x) + F(a) | ||
$$ | ||
|
||
4. **计算定积分**: | ||
当 $x = b$ 时, | ||
$$ | ||
F(b) = G(b) + F(a) | ||
$$ | ||
因此, | ||
$$ | ||
G(b) = F(b) - F(a) | ||
$$ | ||
即 | ||
$$ | ||
\int_a^b f(x) \, dx = F(b) - F(a) | ||
$$ | ||
|
||
#### 总结 | ||
|
||
微积分基本定理的第一部分表明,积分函数的导数就是被积函数。第二部分表明,定积分可以通过原函数的差值来计算。 |