A codebase for training reinforcement learning policies for quadrotor swarms. Includes:
- Flight dynamics simulator forked from https://github.com/amolchanov86/gym_art and extended to support swarms of quadrotor drones
- Scripts and the necessary wrappers to facilitate training of control policies with Sample Factory https://github.com/alex-petrenko/sample-factory
Paper: https://arxiv.org/abs/2109.07735
Website: https://sites.google.com/view/swarm-rl
Initialize a Python environment, i.e. with conda
(Python versions 3.6-3.8 are supported):
conda create -n swarm-rl python=3.8
conda activate swarm-rl
Clone and install this repo as an editable Pip package:
git clone https://github.com/alex-petrenko/quad-swarm-rl
cd quad-swarm-rl
pip install -e .
This should pull and install all the necessary dependencies, including Sample Factory and PyTorch.
This will run the baseline experiment. Change the number of workers appropriately to match the number of logical CPU cores on your machine, but it is advised that the total number of simulated environments is close to that in the original command:
python -m swarm_rl.train --env=quadrotor_multi --train_for_env_steps=1000000000 --algo=APPO \
--use_rnn=False \
--num_workers=36 --num_envs_per_worker=4 \
--learning_rate=0.0001 --ppo_clip_value=5.0 \
--recurrence=1 --nonlinearity=tanh --actor_critic_share_weights=False \
--policy_initialization=xavier_uniform --adaptive_stddev=False --with_vtrace=False \
--max_policy_lag=100000000 --hidden_size=256 --gae_lambda=1.00 --max_grad_norm=5.0 \
--exploration_loss_coeff=0.0 --rollout=128 --batch_size=1024 --quads_use_numba=True \
--quads_mode=mix --quads_episode_duration=15.0 --quads_formation_size=0.0 \
--encoder_custom=quad_multi_encoder --with_pbt=False --quads_collision_reward=5.0 \
--quads_neighbor_hidden_size=256 --neighbor_obs_type=pos_vel --quads_settle_reward=0.0 \
--quads_collision_hitbox_radius=2.0 --quads_collision_falloff_radius=4.0 --quads_local_obs=6 \
--quads_local_metric=dist --quads_local_coeff=1.0 --quads_num_agents=8 --quads_collision_reward=5.0 \
--quads_collision_smooth_max_penalty=10.0 --quads_neighbor_encoder_type=attention \
--replay_buffer_sample_prob=0.75 --anneal_collision_steps=300000000 --experiment=swarm_rl
Or, even better, you can use the runner scripts in swarm_rl/runs/
. Runner scripts (a Sample Factory feature) are Python files that
contain experiment parameters, and support features such as evaluation on multiple seeds and gridsearches.
To execute a runner script run the following command:
python -m sample_factory.runner.run --run=swarm_rl.runs.quad_multi_mix_baseline_attn --runner=processes --max_parallel=4 --pause_between=1 --experiments_per_gpu=1 --num_gpus=4
This command will start training four different seeds in parallel on a 4-GPU server. Adjust the parameters accordingly to match your hardware setup.
To monitor the experiments, go to the experiment folder, and run the following command:
tensorboard --logdir=./
To test the trained model, run the following command:
python -m swarm_rl.enjoy --algo=APPO --env=quadrotor_multi --replay_buffer_sample_prob=0 --continuous_actions_sample=False --quads_use_numba=False --train_dir=PATH_TO_PROJECT/swarm_rl/train_dir --experiments_root=EXPERIMENT_ROOT --experiment=EXPERIMENT_NAME
To run unit tests:
./run_tests.sh
If you use this repository in your work or otherwise wish to cite it, please make reference to our CORL paper.
@inproceedings{batra21corl,
author = {Sumeet Batra and
Zhehui Huang and
Aleksei Petrenko and
Tushar Kumar and
Artem Molchanov and
Gaurav S. Sukhatme},
title = {Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning},
booktitle = {5th Conference on Robot Learning, CoRL 2021, 8-11 November 2021, London, England, {UK}},
series = {Proceedings of Machine Learning Research},
publisher = {{PMLR}},
year = {2021},
url = {https://arxiv.org/abs/2109.07735}
}
Github issues and pull requests are welcome.