-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Avimitin <[email protected]>
- Loading branch information
Showing
4 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
{ buildBuddyE2ETest, fetchgit }: | ||
let | ||
model = fetchgit { | ||
url = "https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0"; | ||
rev = "fe8a4ea1ffedaf415f4da2f062534de366a451e6"; | ||
fetchLFS = true; | ||
hash = "sha256-vp/aUHKX+NJZZMIk2CgSh2czeGD0HeQGS30p/If2pA0="; | ||
}; | ||
in | ||
buildBuddyE2ETest { | ||
caseName = "tinyllama"; | ||
|
||
passthru.model = model; | ||
|
||
env.LLAMA_MODEL_PATH = "${model}"; | ||
optPhase = '' | ||
python ./tinyllama.py | ||
echo "Lowering forward.mlir" | ||
buddy-opt forward.mlir -pass-pipeline \ | ||
"builtin.module(func.func(tosa-to-linalg-named),func.func(tosa-to-linalg),\ | ||
func.func(tosa-to-tensor),func.func(tosa-to-arith))" \ | ||
| buddy-opt --arith-expand \ | ||
--eliminate-empty-tensors \ | ||
--empty-tensor-to-alloc-tensor \ | ||
--one-shot-bufferize \ | ||
--batchmatmul-optimize \ | ||
--convert-linalg-to-affine-loops \ | ||
--affine-loop-fusion \ | ||
--lower-affine \ | ||
--func-bufferize \ | ||
--arith-bufferize \ | ||
--tensor-bufferize \ | ||
--buffer-deallocation \ | ||
--finalizing-bufferize \ | ||
--convert-vector-to-scf \ | ||
--expand-strided-metadata \ | ||
--convert-vector-to-llvm \ | ||
--memref-expand \ | ||
--arith-expand \ | ||
--convert-arith-to-llvm \ | ||
--finalize-memref-to-llvm \ | ||
--convert-scf-to-cf \ | ||
--llvm-request-c-wrappers \ | ||
--convert-openmp-to-llvm \ | ||
--convert-arith-to-llvm \ | ||
--convert-math-to-llvm \ | ||
--convert-math-to-libm \ | ||
--convert-func-to-llvm \ | ||
--reconcile-unrealized-casts \ | ||
> forward-lowered.mlir | ||
echo "Lowering subgraphs[0]" | ||
buddy-opt subgraphs0.mlir -pass-pipeline \ | ||
"builtin.module(func.func(tosa-to-linalg-named, tosa-to-arith, tosa-to-linalg, tosa-to-tensor))" \ | ||
| buddy-opt \ | ||
--arith-expand \ | ||
--eliminate-empty-tensors \ | ||
--empty-tensor-to-alloc-tensor \ | ||
--one-shot-bufferize \ | ||
--batchmatmul-optimize \ | ||
--convert-linalg-to-affine-loops \ | ||
--affine-loop-fusion \ | ||
--lower-affine \ | ||
--func-bufferize-dynamic-offset \ | ||
--tensor-bufferize \ | ||
--arith-bufferize \ | ||
--buffer-deallocation \ | ||
--finalizing-bufferize \ | ||
--convert-vector-to-scf \ | ||
--expand-strided-metadata \ | ||
--cse \ | ||
--lower-vector-exp \ | ||
--lower-rvv=rv32 \ | ||
--convert-vector-to-llvm \ | ||
--memref-expand \ | ||
--arith-expand \ | ||
--convert-arith-to-llvm \ | ||
--finalize-memref-to-llvm \ | ||
--convert-scf-to-cf \ | ||
--llvm-request-c-wrappers \ | ||
--convert-openmp-to-llvm \ | ||
--convert-arith-to-llvm \ | ||
--convert-math-to-llvm \ | ||
--convert-math-to-libm \ | ||
--convert-func-to-llvm \ | ||
--reconcile-unrealized-casts \ | ||
> subgraphs0-lowered.mlir | ||
echo "Compiling memrefCopy library" | ||
$CXX -nostdlib -c ${../lib/MemrefCopy.cc} -o memrefCopy.o | ||
llcArtifacts+=( | ||
memrefCopy.o | ||
) | ||
optArtifacts+=( | ||
"forward-lowered.mlir" | ||
"subgraphs0-lowered.mlir" | ||
) | ||
''; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
//===- GoogleBenchmarkMain.cpp --------------------------------------------===// | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
// | ||
// This file implements the benchmark for Tiny LLaMA model. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "memref.hpp" | ||
|
||
constexpr size_t ParamsSize = 110581; | ||
// constexpr size_t ParamsSize = 11058; | ||
constexpr size_t MaxVocabSize = 32000; | ||
constexpr size_t MaxTokenLength = 40; | ||
constexpr size_t HiddenSize = 2048; | ||
|
||
// resultContainer[0] | ||
__attribute((section(".vdata"))) float result0[1 + MaxTokenLength + HiddenSize]; | ||
static constexpr int32_t sizesResult0[3] = {1, MaxTokenLength, HiddenSize}; | ||
|
||
// resultContainer[1] | ||
__attribute(( | ||
section(".vdata"))) float result1[1 + MaxTokenLength + MaxVocabSize]; | ||
static constexpr int32_t sizesResult1[3] = {1, MaxTokenLength, MaxVocabSize}; | ||
|
||
// inputContainer | ||
__attribute((section(".vdata"))) int32_t input[1 + MaxTokenLength]; | ||
static constexpr int32_t sizesInput[2] = {1, MaxTokenLength}; | ||
|
||
// paramsContainer | ||
__attribute((section(".vdata"))) float param[ParamsSize]; | ||
static constexpr int32_t sizesParam[1] = {ParamsSize}; | ||
|
||
extern "C" { | ||
void _mlir_ciface_forward(MemRef<float, 3> *a, MemRef<float, 1> *b, | ||
MemRef<int32_t, 2> *c); | ||
} | ||
|
||
MemRef<float, 3> resultContainer[2] = { | ||
MemRef<float, 3>(result0, 2.0, sizesResult0), | ||
MemRef<float, 3>(result1, 3.0, sizesResult1)}; | ||
MemRef<int32_t, 2> inputContainer(input, 4, sizesInput); | ||
MemRef<float, 1> paramsContainerf32(param, 5.0, sizesParam); | ||
|
||
extern "C" int test() { | ||
_mlir_ciface_forward(resultContainer, ¶msContainerf32, &inputContainer); | ||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
# ===- buddy_tinyllama_import.py ----------------------------------------------- | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
# | ||
# This is the TinyLlama model AOT importer. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
|
||
import os | ||
import sys | ||
import torch | ||
from torch._inductor.decomposition import decompositions as inductor_decomp | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
from buddy.compiler.frontend import DynamoCompiler | ||
from buddy.compiler.ops import tosa | ||
from buddy.compiler.graph import GraphDriver | ||
from buddy.compiler.graph.transform import simply_fuse | ||
|
||
checkpoint = os.environ.get("LLAMA_MODEL_PATH") | ||
if checkpoint is None: | ||
sys.exit("Error: No model path was provided. Please set $LLAMA_MODEL_PATH") | ||
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | ||
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto") | ||
model.config.use_cache = False | ||
|
||
# Initialize Dynamo Compiler with specific configurations as an importer. | ||
dynamo_compiler = DynamoCompiler( | ||
primary_registry=tosa.ops_registry, | ||
aot_autograd_decomposition=inductor_decomp, | ||
) | ||
|
||
# Import the model into MLIR module and parameters. | ||
with torch.no_grad(): | ||
data = torch.tensor([[1 for i in range(40)]], dtype=torch.int64) | ||
graphs = dynamo_compiler.importer(model, data) | ||
|
||
assert len(graphs) == 1 | ||
graph = graphs[0] | ||
params = dynamo_compiler.imported_params[graph] | ||
pattern_list = [simply_fuse] | ||
graphs[0].fuse_ops(pattern_list) | ||
driver = GraphDriver(graphs[0]) | ||
driver.subgraphs[0].lower_to_top_level_ir() | ||
with open("subgraphs0.mlir", "w") as module_file: | ||
print(driver.subgraphs[0]._imported_module, file=module_file) | ||
with open("forward.mlir", "w") as module_file: | ||
print(driver.construct_main_graph(True), file=module_file) |