The primary goal of this work is to build up a Model of Skin Cancer Detection System utilizing Machine Learning Algorithms. After experimenting with many different architectures for the CNN model It is found that adding the BatchNormalization layer after each Dense, and MaxPooling2D layer can help increase the validation accuracy. In future, a mobile application can be made.
Play with Skin Cancer Images here: (https://skin-cancer-detection-cnn.herokuapp.com/)
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
•Run the app.py file
•Go to http://localhost:5000/ on your browser
•Use the Upload and button to browse and upload the image you want
•Hit submit to get the results.
•Depploy it to Azure Webapp or Heroku App through github repository
•Go to url generated after deployment on your browser
•Use the Upload and button to browse and upload the image you want
•Hit submit to get the results.
• numpy
• keras
• tensorflow-cpu==2.5.0
• pandas
• matplotlib
• pillow
• flask
• seaborn
• gunicorn
This is the Jupyter notebook used to define and train the model.
This is the flask app that needs to run in order to use the webapp
This contains the definition of the CNN model.
Contains the weights of the best model.
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 28, 28, 16) 448
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16) 0
_________________________________________________________________
batch_normalization (BatchNo (None, 14, 14, 16) 64
_________________________________________________________________
conv2d_1 (Conv2D) (None, 12, 12, 32) 4640
_________________________________________________________________
conv2d_2 (Conv2D) (None, 10, 10, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 5, 5, 64) 256
_________________________________________________________________
conv2d_3 (Conv2D) (None, 3, 3, 128) 73856
_________________________________________________________________
conv2d_4 (Conv2D) (None, 1, 1, 256) 295168
_________________________________________________________________
flatten (Flatten) (None, 256) 0
_________________________________________________________________
dropout (Dropout) (None, 256) 0
_________________________________________________________________
dense (Dense) (None, 256) 65792
_________________________________________________________________
batch_normalization_2 (Batch (None, 256) 1024
_________________________________________________________________
dropout_1 (Dropout) (None, 256) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 32896
_________________________________________________________________
batch_normalization_3 (Batch (None, 128) 512
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
batch_normalization_4 (Batch (None, 64) 256
_________________________________________________________________
dropout_2 (Dropout) (None, 64) 0
_________________________________________________________________
dense_3 (Dense) (None, 32) 2080
_________________________________________________________________
batch_normalization_5 (Batch (None, 32) 128
_________________________________________________________________
dense_4 (Dense) (None, 7) 231
=================================================================
Total params: 504,103
Trainable params: 502,983
Non-trainable params: 1,120
_________________________________________________________________