Skip to content

The official code for "Towards Generalist Foundation Model for Radiology by Leveraging Web-scale 2D&3D Medical Data".

Notifications You must be signed in to change notification settings

chaoyi-wu/RadFM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

93 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RadFM

The official code for the paper "Towards Generalist Foundation Model for Radiology by Leveraging Web-scale 2D&3D Medical Data"

ArXiv

Website

Model checkpoint

In this project, we collect a large-scale medical multi-modal dataset, MedMD, with 16M 2D or 3D images. We train a new medical multi-modal generative model RadFM on it, enabling both 2D and 3D scans, multi-image input and visual-language interleaving cases.

Latest News:

All Datasets are released! We have updated the links in our dataset table. You can find all our text part data in https://huggingface.co/datasets/chaoyi-wu/RadFM_data_csv.

For decompressing the splited compression files in most cases, please check the following code in linux:

cat zip.z* > myzip.zip
unzip myzip.zip

Quick Start:

For quick start, you can check the Quick_demo path.
We demonstrate a simple diagnosis case here to show how to inference with our model.
Feel free to modify it as you want.

  • S1. Download Model checkpoint or form baiduyun (No need for decompressing).

  • S2. Decompress the original zip file, you can get a pytorch_model.bin.

  • S3. put pytorch_model.bin under path Quick_demo/.

  • S4. python test.py and you can get a conversation as:

    Input: Can you identify any visible signs of Cardiomegaly in the image?
    Output: yes

By the way, never try to perform this in cpu and gpu is all you need :).

Pre-train:

For re-training a model on our dataset or large-scale testing our pre-train model, you can check src.

Simply, train.py for training and test.py for testing.

  • Check the data_csv to get how different datasets are processed and download them into src/Dataset/data_csv
  • Modify the path as you disire, and check src/train.py to pre-train or src/train.py to test.

Case Study:

Some cases produced by our final model:

Dataset-Links:

Datasets downloading URL:

Dataset Name Link Access
Rad3D-series - Closed
MPx-series - Closed
PMC-Figures https://pan.baidu.com/s/1Src_rhXsaOFp8zJ_3zMFsQ?pwd=p3ne Open Access
PMC-Inline https://huggingface.co/datasets/chaoyi-wu/PMC-Inline Open Access
PMC-CaseReport Original version, Filtered version Open Access
VinDr-Mammo https://www.physionet.org/content/vindr-mammo/1.0.0/ Credentialed Access
VinDr-SpineXR https://www.physionet.org/content/vindr-spinexr/1.0.0/ Credentialed Access
VinDr-PCXR https://physionet.org/content/vindr-pcxr/1.0.0/ Credentialed Access
PMC-OA https://huggingface.co/datasets/axiong/pmc_oa_beta Open Access
PMC-VQA https://huggingface.co/datasets/xmcmic/PMC-VQA Open Access
VQA-RAD https://osf.io/89kps/ Open Access
SLAKE https://www.med-vqa.com/slake/ Open Access
MIMIC-CXR https://physionet.org/content/mimic-cxr/2.0.0 Credentialed Access
VinDr-CXR https://physionet.org/content/vindr-cxr/1.0.0/ Credentialed Access
NIH ChestXray14 https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345 Open Access
CheXpert https://aimi.stanford.edu/chexpert-chest-x-rays Open Access
Covid-CXR2 https://www.kaggle.com/datasets/andyczhao/covidx-cxr2 Open Access
NLM-TB Montgomery, ChinaSet Open Access
Object-CXR https://web.archive.org/web/20201127235812/https://jfhealthcare.github.io/object-CXR/ Open Access
OpenI https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university Open Access
RSNA https://www.rsna.org/education/ai-resources-and-training/ai-image-challenge/rsna-pneumonia-detection-challenge-2018 Open Access
SIIM-ACR https://www.kaggle.com/datasets/jesperdramsch/siim-acr-pneumothorax-segmentation-data Open Access

The split of each dataset can be found in https://huggingface.co/datasets/chaoyi-wu/RadFM_data_csv you just need to download the image part from each datasets.

Dataset Codes and Files Linking:

Check the following table to see how to process each dataset and how each file in https://huggingface.co/datasets/chaoyi-wu/RadFM_data_csv is linked to each dataset:

Dataset Name Process Dataset Code Related Filename
Rad3D-series jpg2nii Process Code, nii2npy Process Code, Final Datset to Read npy and Related Texts radiology_article_npy_train/test.json
MPx-series MedPix Dataset MedPix_muli_train/test.csv, MedPix_single_train/test.csv
PMC-Inline Paper-inline Dataset paper_train.csv (This dataset is not used for evaluation)
PMC-CaseReport Case-report Dataset filtered_case_report_train/test.csv
VinDr-Mammo Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset mammo_balance_train/test.csv
VinDr-SpineXR Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset spinexr_balance_train/test.csv
VinDr-PCXR Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset pcxr_balance_train/test.csv
PMC-OA Pmcoa Dataset pmcoa_image_caption_train/test.csv
PMC-VQA vqa Dataset pmcvaq_train/test.csv
VQA-RAD vqa Dataset vqarad_train/test.csv
SLAKE vqa Dataset slakevqa_train/test.csv
MIMIC-CXR CXR Open Captioning Dataset mimic_caption_train/test.csv
VinDr-CXR Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
NIH ChestXray14 Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
CheXpert Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
Covid-CXR2 Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
NLM-TB Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
Object-CXR Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
OpenI Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
RSNA Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv
SIIM-ACR Diagnosis Open Format Dataset, Diagnosis Close (yes/no) Format Dataset chestxray_balance_train_new.csv, chestxray_balance_test.csv

Acknowledgment:

We sincerely thank all the contributors who uploaded the relevant data in our dataset online. We appreciate their willingness to make these valuable cases publicly available.

Contact

If you have any questions, please feel free to contact [email protected].

About

The official code for "Towards Generalist Foundation Model for Radiology by Leveraging Web-scale 2D&3D Medical Data".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages