Skip to content

capstanlqc/comet-api-mock

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MT Quality Estimation

COMET models are trained to predict quality scores for translations. This is a mock version which provides random scores.

Getting started

Clone this repository:

gh repo clone capstanlqc/comet-api-mock

Create a virtual environment and activate it:

cd /path/to/comet-api-mock
python -m venv venv && source venv/bin/activate

Install dependencies:

pip install -r requirements.txt

Copy .env.example to .env:

cp .env-example .env

Update the environment variables you need to use in .env (none in the mock version).

Run the API (for testing and development):

fastapi dev code/main.py

Test

The mandatory model parameter accepts values such as provider/model. The optional mode parameter accepts either mock (default value, if missing) or any other value (e.g. dev or prod, not yet defined).

The following call will get mock random scores (same as without mode parameter):

curl --location --request GET 'http://127.0.0.1:8000/api/scores?model=Unbabel/wmt22-cometkiwi-da&mode=mock' \
--header 'Content-Type: application/json' \
--data '[
    {"src": "How to Demonstrate Your Strategic Thinking Skills", "mt": "Cómo demostrar su capacidad de pensamiento estratégico" },{ "src": "Why is Accuracy important in the workplace?", "mt": "¿Por qué es importante la precisión en el trabajo" }, { "src": "When faced with a large amount of analysis ask for support setting up a team to approach the issue in different ways.", "mt": "Cuando se enfrente a una gran cantidad de análisis, pida ayuda para crear un equipo que aborde la cuestión de diferentes maneras." }
]'

About

Light version for testing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 74.0%
  • Shell 26.0%