Skip to content

Commit

Permalink
Adding a simple notebook aiming at comparing different solvers
Browse files Browse the repository at this point in the history
  • Loading branch information
tvercaut committed Oct 4, 2023
1 parent 62ec474 commit a9fd056
Showing 1 changed file with 389 additions and 0 deletions.
389 changes: 389 additions & 0 deletions torchsparsegradutils/tests/spd_forward_solve_notebook.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,389 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyN0JFpiKDeXK9tTd/a7xn9o",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"gpuClass": "standard"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/cai4cai/torchsparsegradutils/blob/test-notebook/tests/spd_forward_solve_notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# A basic notebook to compare different solvers for a SPD matrix\n",
"\n",
"First import all necessary modules."
],
"metadata": {
"id": "xvuQc5HyjX4t"
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3hHTa-xCjIQv",
"outputId": "cf255d05-b0ab-4a79-9765-1ed23fbff784"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Running PyTorch version: 1.13.0+cu116\n",
"Default GPU is Tesla T4\n",
"Running on cuda\n",
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting git+https://github.com/cai4cai/torchsparsegradutils\n",
" Cloning https://github.com/cai4cai/torchsparsegradutils to /tmp/pip-req-build-plwawj9f\n",
" Running command git clone -q https://github.com/cai4cai/torchsparsegradutils /tmp/pip-req-build-plwawj9f\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: torch>=1.13 in /usr/local/lib/python3.8/dist-packages (from torchsparsegradutils==0.0.1) (1.13.0+cu116)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch>=1.13->torchsparsegradutils==0.0.1) (4.4.0)\n"
]
}
],
"source": [
"import torch\n",
"print(f'Running PyTorch version: {torch.__version__}')\n",
"\n",
"torchdevice = torch.device('cpu')\n",
"if torch.cuda.is_available():\n",
" torchdevice = torch.device('cuda')\n",
" print('Default GPU is ' + torch.cuda.get_device_name(torch.device('cuda')))\n",
"print('Running on ' + str(torchdevice))\n",
"\n",
"import numpy as np\n",
"import scipy.io\n",
"import scipy.sparse.linalg\n",
"\n",
"import cupyx\n",
"import cupyx.scipy.sparse as csp\n",
"\n",
"import jax\n",
"from jax.config import config\n",
"config.update(\"jax_enable_x64\", True)\n",
"\n",
"!pip install git+https://github.com/cai4cai/torchsparsegradutils\n",
"import torchsparsegradutils as tsgu\n",
"import torchsparsegradutils.utils\n",
"import torchsparsegradutils.cupy as tsgucupy\n",
"import torchsparsegradutils.jax as tsgujax\n",
"\n",
"import time\n",
"import urllib\n",
"import os.path\n",
"import tarfile"
]
},
{
"cell_type": "markdown",
"source": [
"Now load an example SPD matrix and create a random RHS vector"
],
"metadata": {
"id": "Vp-qCHEDkQbm"
}
},
{
"cell_type": "code",
"source": [
"def load_mat_from_suitesparse_collection(dirname,matname):\n",
" base_url = 'https://suitesparse-collection-website.herokuapp.com/MM/'\n",
" url = base_url + dirname + '/' + matname + '.tar.gz'\n",
" compressedlocalfile = matname + '.tar.gz'\n",
" if not os.path.exists(compressedlocalfile):\n",
" print(f'Downloading {url}')\n",
" urllib.request.urlretrieve(url, filename=compressedlocalfile)\n",
"\n",
" localfile = './' + matname + '/' + matname + '.mtx'\n",
" if not os.path.exists(localfile):\n",
" print(f'untarring {compressedlocalfile}')\n",
" srctarfile = tarfile.open(compressedlocalfile)\n",
" srctarfile.extractall('./')\n",
" srctarfile.close()\n",
"\n",
" A_np_coo = scipy.io.mmread(localfile)\n",
" print(f'Loaded suitesparse matrix {dirname}/{matname}: type={type(A_np_coo)}, shape={A_np_coo.shape}')\n",
" return A_np_coo\n",
"\n",
"A_np_coo = load_mat_from_suitesparse_collection('Rothberg','cfd2')\n",
"A_np_csr = scipy.sparse.csr_matrix(A_np_coo)\n",
"\n",
"b_np = np.random.randn(A_np_coo.shape[1])\n",
"print(f'Created random RHS with shape={b_np.shape}')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0CzeubR_kUVA",
"outputId": "dc3ff1db-1425-4a82-cf54-0ad60f81963c"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Loaded suitesparse matrix Rothberg/cfd2: type=<class 'scipy.sparse.coo.coo_matrix'>, shape=(123440, 123440)\n",
"Created random RHS with shape=(123440,)\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Define some helper functions to run the tests"
],
"metadata": {
"id": "MUacEhsqoYxZ"
}
},
{
"cell_type": "code",
"source": [
"def scipy_test(A, b, tested_solver, print_string):\n",
" t = time.time()\n",
" x = tested_solver(A, b)\n",
" elapsed = time.time() - t\n",
" resnorm = scipy.linalg.norm(A @ x - b)\n",
" print(f'{print_string} took {elapsed:.2f} seconds - resnorm={resnorm:.2e}')\n",
" return elapsed, resnorm"
],
"metadata": {
"id": "1jYXGRDlnmYA"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Run the tests with the scipy routines (it can take a while)"
],
"metadata": {
"id": "Th8gF8MnoeGR"
}
},
{
"cell_type": "code",
"source": [
"run_scipy = True\n",
"if run_scipy:\n",
" t, n = scipy_test(A_np_coo, b_np, scipy.sparse.linalg.spsolve, 'scipy.spsolve COO')\n",
" t, n = scipy_test(A_np_csr, b_np, scipy.sparse.linalg.spsolve, 'scipy.spsolve CSR')\n",
" t, n = scipy_test(A_np_coo, b_np, lambda A, b: scipy.sparse.linalg.cg(A,b)[0], 'scipy.cg COO')\n",
" t, n = scipy_test(A_np_csr, b_np, lambda A, b: scipy.sparse.linalg.cg(A,b)[0], 'scipy.cg CSR')\n",
" t, n = scipy_test(A_np_coo, b_np, lambda A, b: scipy.sparse.linalg.bicgstab(A,b)[0], 'scipy.bicgstab COO')\n",
" t, n = scipy_test(A_np_csr, b_np, lambda A, b: scipy.sparse.linalg.bicgstab(A,b)[0], 'scipy.bicgstab CSR')\n",
" t, n = scipy_test(A_np_coo, b_np, lambda A, b: scipy.sparse.linalg.minres(A,b)[0], 'scipy.minres COO')\n",
" t, n = scipy_test(A_np_csr, b_np, lambda A, b: scipy.sparse.linalg.minres(A,b)[0], 'scipy.minres CSR')\n",
"else:\n",
" print('Skipping scipy tests')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4KaNyZpDogS4",
"outputId": "34e0dc0b-392b-4485-ac55-1233dde26aaf"
},
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.8/dist-packages/scipy/sparse/linalg/dsolve/linsolve.py:144: SparseEfficiencyWarning: spsolve requires A be CSC or CSR matrix format\n",
" warn('spsolve requires A be CSC or CSR matrix format',\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"scipy.spsolve COO took 108.62 seconds - resnorm=2.15e-10\n",
"scipy.spsolve CSR took 98.29 seconds - resnorm=2.49e-10\n",
"scipy.cg COO took 72.09 seconds - resnorm=3.50e-03\n",
"scipy.cg CSR took 55.59 seconds - resnorm=3.50e-03\n",
"scipy.bicgstab COO took 112.65 seconds - resnorm=2.31e-03\n",
"scipy.bicgstab CSR took 88.79 seconds - resnorm=2.31e-03\n",
"scipy.minres COO took 0.54 seconds - resnorm=3.05e+01\n",
"scipy.minres CSR took 0.38 seconds - resnorm=3.05e+01\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Create corresponding PyTorch tensors"
],
"metadata": {
"id": "BqOzcOXYrMY0"
}
},
{
"cell_type": "code",
"source": [
"A_tcpu_csr = tsgucupy.c2t_csr(A_np_csr)\n",
"b_tcpu = torch.from_numpy(b_np)\n",
"\n",
"if torch.cuda.is_available():\n",
" A_tgpu_csr = A_tcpu_csr.to(torchdevice)\n",
" b_tgpu = b_tcpu.to(torchdevice)"
],
"metadata": {
"id": "DHqwjtVOrRyH",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "307faf94-ee4a-4943-d483-ad084246ee0d"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.8/dist-packages/torchsparsegradutils/cupy/cupy_bindings.py:52: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:54.)\n",
" x_torch = torch.sparse_csr_tensor(ind_ptr_t, idices_t, data_t, x_cupy.shape)\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Define some helper function to run the tests with pytorch"
],
"metadata": {
"id": "zRZ7yXiZrjJ3"
}
},
{
"cell_type": "code",
"source": [
"def torch_test(A, b, tested_solver, print_string):\n",
" t = time.time()\n",
" x = tested_solver(A, b)\n",
" elapsed = time.time() - t\n",
" resnorm = torch.norm(A @ x - b).cpu().numpy()\n",
" print(f'{print_string} took {elapsed:.2f} seconds - resnorm={resnorm:.2e}')\n",
" print(f'GPU memory allocated: {torch.cuda.memory_allocated(device=torchdevice)/10**9:.2f}Gb'\n",
" f' - max allocated: {torch.cuda.max_memory_allocated(device=torchdevice)/10**9:.2f}Gb')\n",
" #print(torch.cuda.memory_summary(abbreviated=True))\n",
" return elapsed, resnorm"
],
"metadata": {
"id": "jE0EFZiJrw71"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Run the tests with our pytorch routines (this can take a while)"
],
"metadata": {
"id": "-nSPnGeosFGr"
}
},
{
"cell_type": "code",
"source": [
"print(f'GPU memory allocated: {torch.cuda.memory_allocated(device=torchdevice)/10**9:.2f}Gb'\n",
" f' - max allocated: {torch.cuda.max_memory_allocated(device=torchdevice)/10**9:.2f}Gb')\n",
"#print(torch.cuda.memory_summary(abbreviated=True))\n",
"\n",
"#t, n = torch_test(A_tcpu_csr, b_tcpu, tsgu.sparse_generic_solve, 'tsgu.sparse_generic_solve CPU CSR')\n",
"if torch.cuda.is_available():\n",
" t, n = torch_test(A_tgpu_csr, b_tgpu, tsgu.sparse_generic_solve, 'tsgu.sparse_generic_solve GPU CSR')\n",
"\n",
"#t, n = torch_test(A_tcpu_csr, b_tcpu, tsgu.sparse_generic_lstsq, 'tsgu.sparse_generic_lstsq CPU CSR')\n",
"#if torch.cuda.is_available():\n",
"# t, n = torch_test(A_tgpu_csr, b_tgpu, tsgu.sparse_generic_lstsq, 'tsgu.sparse_generic_lstsq GPU CSR')\n",
"\n",
"mysolver = lambda A, b: tsgu.sparse_generic_solve(A,b,solve=tsgu.utils.minres)\n",
"if torch.cuda.is_available():\n",
" t, n = torch_test(A_tgpu_csr, b_tgpu, mysolver, 'tsgu.sparse_generic_solve minres GPU CSR')\n",
"\n",
"mysolver = lambda A, b: tsgu.sparse_generic_solve(A,b,solve=tsgu.utils.linear_cg)\n",
"if torch.cuda.is_available():\n",
" t, n = torch_test(A_tgpu_csr, b_tgpu, mysolver, 'tsgu.sparse_generic_solve cg GPU CSR')\n",
"\n",
"mysolver = lambda A, b: tsgu.sparse_generic_solve(A,b,solve=tsgu.utils.bicgstab)\n",
"if torch.cuda.is_available():\n",
" t, n = torch_test(A_tgpu_csr, b_tgpu, mysolver, 'tsgu.sparse_generic_solve bicgstab GPU CSR')\n",
"\n",
"jaxsolver = None\n",
"mysolver = lambda A, b: tsgujax.sparse_solve_j4t(A,b)\n",
"if torch.cuda.is_available():\n",
" t, n = torch_test(A_tgpu_csr, b_tgpu, mysolver, 'tsgu.sparse_solve_j4t cg GPU CSR')\n",
"\n",
"#cpsolver = lambda AA, BB: csp.linalg.cg(AA,BB)[0]\n",
"#mysolver = lambda A, b: tsgucupy.sparse_solve_c4t(A,b,solve=cpsolver)\n",
"#mysolver = lambda A, b: tsgucupy.sparse_solve_c4t(A,b)\n",
"#t, n = torch_test(A_tcpu_csr, b_tcpu, mysolver, 'tsgu.sparse_solve_c4t cg CPU CSR')\n",
"#if torch.cuda.is_available():\n",
"# t, n = torch_test(A_tgpu_csr, b_tgpu, mysolver, 'tsgu.sparse_solve_c4t cg GPU CSR')"
],
"metadata": {
"id": "3HH-nGDSsIXy",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7a8dacff-efaa-416a-f6d5-9a87a2b84157"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"GPU memory allocated: 0.04Gb - max allocated: 0.04Gb\n",
"tsgu.sparse_generic_solve GPU CSR took 0.62 seconds - resnorm=1.93e+00\n",
"GPU memory allocated: 0.04Gb - max allocated: 0.05Gb\n",
"tsgu.sparse_generic_solve minres GPU CSR took 0.46 seconds - resnorm=1.93e+00\n",
"GPU memory allocated: 0.04Gb - max allocated: 0.05Gb\n",
"tsgu.sparse_generic_solve cg GPU CSR took 0.06 seconds - resnorm=2.43e+02\n",
"GPU memory allocated: 0.04Gb - max allocated: 0.05Gb\n",
"tsgu.sparse_generic_solve bicgstab GPU CSR took 9.35 seconds - resnorm=2.60e-04\n",
"GPU memory allocated: 0.04Gb - max allocated: 0.05Gb\n",
"tsgu.sparse_solve_j4t cg GPU CSR took 6.39 seconds - resnorm=2.74e-03\n",
"GPU memory allocated: 0.04Gb - max allocated: 0.05Gb\n"
]
}
]
}
]
}

0 comments on commit a9fd056

Please sign in to comment.