Skip to content

Commit

Permalink
Merge pull request #1548 from bjourne/diehl_cook_2015
Browse files Browse the repository at this point in the history
Add Diehl and Cook (2015) small model
  • Loading branch information
mstimberg authored Dec 20, 2024
2 parents 948dc4b + 8ca7d44 commit 1f31371
Show file tree
Hide file tree
Showing 2 changed files with 318 additions and 1 deletion.
2 changes: 1 addition & 1 deletion docs_sphinx/resources
317 changes: 317 additions & 0 deletions examples/frompapers/Diehl_Cook_2015.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,317 @@
"""
Unsupervised learning using STDP
--------------------------------
Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Frontiers in
computational neuroscience, 9, 99.
This script replicates the small 2x400-model. It has no command line
parameters. Instead, you control it by changing the constants below
the imports. Run the script with MODE set to "train" which
(eventually) creates the files theta.npy and weights.npy in the
DATA_PATH directory. Rerun it with MODE set to "observe" to create the
assign.npy file in the same directory. Then, run "test" to create a
confusion matrix in confusion.npy. Finally, you can use "plot" to
plot the confusion matrix. The script also creates a few auxilliary
.npy files useful for analysis. The script requires the progressbar2
library.
MNIST_PATH should point to the directory storing the unzipped *-byte
MNIST files (e.g. from https://github.com/cvdfoundation/mnist).
For reasonable accuracy, N_TRAIN should be 50,000+ and N_OBSERVE 1,000+.
Written in 2024 by Björn A. Lindqvist <[email protected]>
"""
from brian2 import *
from collections import defaultdict
from pathlib import Path
from progressbar import progressbar
from random import randrange, seed as rseed
from struct import unpack
import numpy as np

# Switch between "train", "observe", and "test" to tune parameters,
# observe excitatory spiking, and test accuracy, respectively.
# Use "plot" to plot the confusion matrix.
MODE = 'test'

# Number of training, observation, and testing samples
N_TRAIN = 25_000
N_OBSERVE = 2_000
N_TEST = 1_000

# Random seed value
SEED = 42

# Storage paths
MNIST_PATH = Path('../mnist')
DATA_PATH = Path('data')

# Number of weight save points
N_SAVE_POINTS = 100

# Don't change these values unless you know what you're doing.
N_INP = 784
N_NEURONS = 400
V_EXC_REST = -65 * mV
V_INH_REST = -60 * mV
INTENSITY = 2

# Weights of exc->inh and inh->exc synapses
W_EXC_INH = 10.4
W_INH_EXC = 17.0

def save_npy(arr, path):
arr = np.array(arr)
print('%-9s %-15s => %-30s' % ('Saving', arr.shape, path))
np.save(path, arr)

def load_npy(path):
arr = np.load(path)
print('%-9s %-30s => %-15s' % ('Loading', path, arr.shape))
return arr

def read_mnist(training):
tag = 'train' if training else 't10k'
images = open(MNIST_PATH / ('%s-images-idx3-ubyte' % tag), 'rb')
images.read(4)
n_images = unpack('>I', images.read(4))[0]
n_rows = unpack(">I", images.read(4))[0]
n_cols = unpack(">I", images.read(4))[0]

labels = open(MNIST_PATH / ('%s-labels-idx1-ubyte' % tag), 'rb')
labels.read(4)
x = np.frombuffer(images.read(), dtype = np.uint8)
x = x.reshape(n_images, -1) / 8.0
y = np.frombuffer(labels.read(), dtype = np.uint8)
return x, y

def build_network(training):
eqs = '''
dv/dt = (v_rest - v + i_exc + i_inh) / tau_mem : volt (unless refractory)
i_exc = ge * -v : volt
i_inh = gi * (v_inh_base - v) : volt
dge/dt = -ge/(1 * ms) : 1
dgi/dt = -gi/(2 * ms) : 1
dtimer/dt = 1 : second
'''
reset = 'v = %r; timer = 0 * ms' % V_EXC_REST
if training:
exc_eqs = eqs + '''
dtheta/dt = -theta / (1e7 * ms) : volt
'''
arr_theta = np.ones(N_NEURONS) * 20 * mV
reset += '; theta += 0.05 * mV'
else:
exc_eqs = eqs + '''
theta : volt
'''
arr_theta = load_npy(DATA_PATH / 'theta.npy') * volt
exc_eqs = Equations(exc_eqs,
tau_mem = 100 * ms,
v_rest = V_EXC_REST,
v_inh_base = -100 * mV)
# Note that this neuron has a bit of un unusual refractoriness mechanism:
# The membrane potential is clamped for 5ms, but spikes are prevented for 50ms
# This has been taken from the original code.
ng_exc = NeuronGroup(
N_NEURONS, exc_eqs,
threshold = 'v > (theta - 72 * mV) and (timer > 50 * ms)',
refractory = 5 * ms,
reset = reset,
method = 'euler',
name = 'exc')
ng_exc.v = V_EXC_REST
ng_exc.theta = arr_theta

inh_eqs = Equations(eqs,
tau_mem = 10 * ms,
v_rest = V_INH_REST,
v_inh_base = -85 * mV)
ng_inh = NeuronGroup(N_NEURONS, inh_eqs,
threshold = 'v > -40 * mV',
refractory = 2 * ms,
reset = 'v = -45 * mV',
method = 'euler',
name = 'inh')
ng_inh.v = V_INH_REST

syns_exc_inh = Synapses(ng_exc, ng_inh,
on_pre = 'ge_post += %f' % W_EXC_INH)
syns_exc_inh.connect(j = 'i')

syns_inh_exc = Synapses(ng_inh, ng_exc,
on_pre = 'gi_post += %f' % W_INH_EXC)
syns_inh_exc.connect("i != j")

pg_inp = PoissonGroup(N_INP, 0 * Hz, name = 'inp')

# During training, inp->exc synapse weights are plastic.
model = 'w : 1'
on_post = ''
on_pre = 'ge_post += w'
if training:
on_pre += '; pre = 1.; w = clip(w - 0.0001 * post1, 0, 1.0)'
on_post += 'post2bef = post2; w = clip(w + 0.01 * pre * post2bef, 0, 1.0); post1 = 1.; post2 = 1.'
model += '''
post2bef : 1
dpre/dt = -pre/(20 * ms) : 1 (event-driven)
dpost1/dt = -post1/(20 * ms) : 1 (event-driven)
dpost2/dt = -post2/(40 * ms) : 1 (event-driven)
'''
weights = (np.random.random(N_INP * N_NEURONS) + 0.01) * 0.3
else:
weights = load_npy(DATA_PATH / 'weights.npy')

syns_inp_exc = Synapses(
pg_inp, ng_exc,
model = model,
on_pre = on_pre,
on_post = on_post,
name = 'inp_exc'
)
syns_inp_exc.connect(True)
syns_inp_exc.delay = 'rand() * 10 * ms'
syns_inp_exc.w = weights

exc_mon = SpikeMonitor(ng_exc, name = 'sp_exc')
net = Network([pg_inp, ng_exc, ng_inh,
syns_inp_exc, syns_exc_inh, syns_inh_exc,
exc_mon])
# Initialize
net.run(0 * ms)
return net

def show_sample(net, sample, intensity):
exc_mon = net['sp_exc']
prev = exc_mon.count[:]
net['inp'].rates = sample * intensity * Hz
net.run(350 * ms)
# Don't count spikes occuring during the 150 ms rest.
next = exc_mon.count[:]
net['inp'].rates = 0 * Hz
net.run(150 * ms)
pat = next - prev
cnt = np.sum(pat)
if cnt < 5:
return show_sample(net, sample, intensity + 1)
return pat

def predict(groups, rates):
return np.argmax([rates[grp].mean() for grp in groups])

def test():
conf = np.zeros((10, 10))
assign = np.load(DATA_PATH / 'assign.npy')
groups = [np.where(assign == i)[0] for i in range(10)]

X, Y = read_mnist(False)
net = build_network(False)
for i in progressbar(range(N_TEST)):
ix = randrange(len(X))
exc = show_sample(net, X[ix], INTENSITY)
guess = predict(groups, exc)
real = Y[ix]
conf[real, guess] += 1

print('Accuracy: %6.3f' % (np.trace(conf) / np.sum(conf)))
conf = conf/conf.sum(axis=1)[:,None]
print(np.around(conf, 2))
save_npy(conf, DATA_PATH / 'confusion.npy')

def normalize_plastic_weights(syns):
conns = np.reshape(syns.w, (N_INP, N_NEURONS))
col_sums = np.sum(conns, axis = 0)
factors = 78./ col_sums
conns *= factors
syns.w = conns.reshape(-1)

def stats(net):
tick = defaultclock.timestep[:]
cnt = np.sum(net['sp_exc'].count[:])

inp_exc = net['inp_exc']
w_mu = np.mean(inp_exc.w)
w_std = np.std(inp_exc.w)

exc = net['exc']
theta = exc.theta / mV
theta_mu = np.mean(theta)
theta_sig = np.std(theta)
return [tick, cnt, w_mu, w_std, theta_mu, theta_sig]

def train():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(True)
rows = [stats(net) + [-1]]
w_hist = [np.array(net['inp_exc'].w)]

ratio = max(N_TRAIN // N_SAVE_POINTS, 1)
for i in progressbar(range(N_TRAIN)):
ix = i % n_samples
normalize_plastic_weights(net['inp_exc'])
show_sample(net, X[ix], INTENSITY)
rows.append(stats(net) + [Y[ix]])
if i % ratio == 0:
w_hist.append(np.array(net['inp_exc'].w))

save_npy(rows, DATA_PATH / 'train_stats.npy')
save_npy(w_hist, DATA_PATH / 'train_w_hist.npy')
save_npy(net['inp_exc'].w, DATA_PATH / 'weights.npy')
save_npy(net['exc'].theta, DATA_PATH / 'theta.npy')

def observe():
X, Y = read_mnist(True)
n_samples = X.shape[0]
net = build_network(False)
rows = [stats(net) + [-1]]
responses = defaultdict(list)

for i in progressbar(range(N_OBSERVE)):
ix = i % n_samples
sample = X[ix]
cls = Y[ix]
exc = show_sample(net, sample, INTENSITY)
rows.append(stats(net) + [Y[ix]])
responses[cls].append(exc)

res = np.zeros((10, N_NEURONS))
for cls, vals in responses.items():
res[cls] = np.array(vals).mean(axis = 0)

assign = np.argmax(res, axis = 0)
save_npy(assign, DATA_PATH / 'assign.npy')
save_npy(rows, DATA_PATH / 'observe_stats.npy')

def plot():
conf = np.load(DATA_PATH / "confusion.npy")

import matplotlib.pyplot as plt

plt.imshow(100*conf, interpolation="nearest", cmap=plt.cm.Blues)
for i, j in itertools.product(range(conf.shape[0]), range(conf.shape[1])):
if conf[i, j] == 0:
continue
plt.text(
j,
i,
f"{round(100*conf[i, j])}%",
horizontalalignment="center",
verticalalignment="center",
color="white" if conf[i, j] > 0.5 else "black",
)
plt.colorbar()
plt.xticks(range(10))
plt.yticks(range(10))
plt.xlabel("Predicted label")
plt.ylabel("True label")
plt.show()


if __name__ == '__main__':
seed(SEED)
rseed(SEED)
DATA_PATH.mkdir(parents = True, exist_ok = True)
cmds = dict(train=train, observe=observe, test=test, plot=plot)
cmds[MODE]()

0 comments on commit 1f31371

Please sign in to comment.