-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_epoch.py
73 lines (67 loc) · 2.96 KB
/
test_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Testing functions.
# author: ynie
# date: April, 2020
from net_utils.utils import LossRecorder
from time import time
import torch
from net_utils.ap_helper import APCalculator
import numpy as np
def test_func(cfg, tester, test_loader):
'''
test function.
:param cfg: configuration file
:param tester: specific tester for networks
:param test_loader: dataloader for testing
:return:
'''
mode = cfg.config['mode']
batch_size = cfg.config[mode]['batch_size']
loss_recorder = LossRecorder(batch_size)
AP_IOU_THRESHOLDS = cfg.config[mode]['ap_iou_thresholds']
evaluate_mesh_mAP = True if cfg.config[mode]['phase'] == 'completion' and cfg.config['generation'][
'generate_mesh'] and cfg.config[mode]['evaluate_mesh_mAP'] else False
ap_calculator_list = [APCalculator(iou_thresh, cfg.dataset_config.class2type, evaluate_mesh_mAP) for iou_thresh in
AP_IOU_THRESHOLDS]
cfg.log_string('-'*100)
for iter, data in enumerate(test_loader):
loss, est_data = tester.test_step(data)
### Visualize attention map
#attention_map = est_data[0]['attention_map']
#with open("att_map01/attention_scene_" + str(iter) + ".txt", "w") as output:
# output.write('\n'.join(attention_map))
###
eval_dict = est_data[4]
for ap_calculator in ap_calculator_list:
ap_calculator.step(eval_dict['batch_pred_map_cls'], eval_dict['batch_gt_map_cls'])
# visualize intermediate results.
if cfg.config['generation']['dump_results']:
tester.visualize_step(mode, iter, data, est_data, eval_dict)
loss_recorder.update_loss(loss)
if ((iter + 1) % cfg.config['log']['print_step']) == 0:
cfg.log_string('Process: Phase: %s. Epoch %d: %d/%d. Current loss: %s.' % (
mode, 0, iter + 1, len(test_loader), str({key: np.mean(item) for key, item in loss.items()})))
return loss_recorder.loss_recorder, ap_calculator_list
def test(cfg, tester, test_loader):
'''
train epochs for network
:param cfg: configuration file
:param tester: specific tester for networks
:param test_loader: dataloader for testing
:return:
'''
cfg.log_string('-' * 100)
# set mode
mode = cfg.config['mode']
tester.net.train(mode == 'train')
start = time()
test_loss_recoder, ap_calculator_list = test_func(cfg, tester, test_loader)
cfg.log_string('Test time elapsed: (%f).' % (time()-start))
for key, test_loss in test_loss_recoder.items():
cfg.log_string('Test loss (%s): %f' % (key, test_loss.avg))
# Evaluate average precision
AP_IOU_THRESHOLDS = cfg.config[mode]['ap_iou_thresholds']
for i, ap_calculator in enumerate(ap_calculator_list):
cfg.log_string(('-'*10 + 'iou_thresh: %f' + '-'*10) % (AP_IOU_THRESHOLDS[i]))
metrics_dict = ap_calculator.compute_metrics()
for key in metrics_dict:
cfg.log_string('eval %s: %f' % (key, metrics_dict[key]))