Skip to content

bilalghanem/fake_flow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Note: If you need the full corpus, please fill this form: MultiSourceFake data

This is the code of the system proposed in the paper:

FakeFlow: Fake News Detection by Modeling the Flow of Affective Information

REQUIREMENTS:

  • gensim==3.8.0
  • joblib==0.14.1
  • Keras==2.2.4
  • Keras-Preprocessing==1.1.0
  • keras-self-attention==0.35.0
  • numpy==1.16.0
  • pandas==0.24.2
  • nltk==3.4.5
  • scikit-learn==0.20.2
  • tensorflow-gpu==1.14.0
  • tqdm==4.32.1
  • hyperopt==0.1.1

Place your data in the folder ./data/DATASET_NAME

To run the model, run the file: fake_flow.py

parameters: -d: dataset name (i.e. MultiSourceFake).

-sn: number of segments.

-s: to search for params; enter a number larger than 0 to search for N different combination of parameters (e.g. 150).

-m: mode (train or test); if you want to load a pretrained model.

An example:

fake_flow.py -d MultiSourceFake -sn 10

To load saved model after training:

fake_flow.py -d MultiSourceFake -sn 10 -m test

To search for best params:

fake_flow.py -d MultiSourceFake -s 80

Citation:

@inproceedings{ghanem2021fakeflow,
  title={{FakeFlow: Fake News Detection by Modeling the Flow of Affective Information}},
  author={Ghanem, Bilal and Ponzetto, Simone Paolo and Rosso, Paolo and Rangel, Francisco},
  booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics},
  year={2021}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages