Note: If you need the full corpus, please fill this form: MultiSourceFake data
This is the code of the system proposed in the paper:
REQUIREMENTS:
- gensim==3.8.0
- joblib==0.14.1
- Keras==2.2.4
- Keras-Preprocessing==1.1.0
- keras-self-attention==0.35.0
- numpy==1.16.0
- pandas==0.24.2
- nltk==3.4.5
- scikit-learn==0.20.2
- tensorflow-gpu==1.14.0
- tqdm==4.32.1
- hyperopt==0.1.1
Place your data in the folder ./data/DATASET_NAME
To run the model, run the file: fake_flow.py
parameters:
-d
: dataset name (i.e. MultiSourceFake).
-sn
: number of segments.
-s
: to search for params; enter a number larger than 0 to search for N different combination of parameters (e.g. 150).
-m
: mode (train or test); if you want to load a pretrained model.
An example:
fake_flow.py -d MultiSourceFake -sn 10
To load saved model after training:
fake_flow.py -d MultiSourceFake -sn 10 -m test
To search for best params:
fake_flow.py -d MultiSourceFake -s 80
Citation:
@inproceedings{ghanem2021fakeflow,
title={{FakeFlow: Fake News Detection by Modeling the Flow of Affective Information}},
author={Ghanem, Bilal and Ponzetto, Simone Paolo and Rosso, Paolo and Rangel, Francisco},
booktitle={Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics},
year={2021}
}