Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ported combinedFilter to vis format, and fixed dimension bug in windo… #39

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions perception/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,13 @@
import perception.tasks.gate.GateSegmentationAlgoA as GateSegA
import perception.tasks.gate.GateSegmentationAlgoB as GateSegB
import perception.tasks.gate.GateSegmentationAlgoC as GateSegC
# import perception.tasks as tasks
import perception.tasks.segmentation.combinedFilter as CombinedFilter

ALGOS = {
'test': TestAlgo.TestAlgo,
'gateseg': GateSeg.GateCenterAlgo,
'gatesegA': GateSegA.GateSegmentationAlgoA,
'gatesegB': GateSegB.GateSegmentationAlgoB,
'gatesegC': GateSegC.GateSegmentationAlgoC
'gatesegC': GateSegC.GateSegmentationAlgoC,
'combined_segmentations': CombinedFilter.CombinedFilter
}
6 changes: 3 additions & 3 deletions perception/tasks/gate/GateSegmentationAlgoA.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from perception.tasks.TaskPerceiver import TaskPerceiver
from typing import Tuple

from perception.tasks.segmentation.combinedFilter import init_combined_filter
from perception.tasks.segmentation.combinedFilter import CombinedFilter
import numpy as np
import cv2 as cv

Expand All @@ -11,7 +11,7 @@ class GateSegmentationAlgoA(TaskPerceiver):

def __init__(self):
super().__init__()
self.combined_filter = init_combined_filter()
self.combined_filter = CombinedFilter().combined_filter

# TODO: fix return typing
def analyze(self, frame: np.ndarray, debug: bool, slider_vals=None) -> Tuple[float, float]:
Expand All @@ -25,7 +25,7 @@ def analyze(self, frame: np.ndarray, debug: bool, slider_vals=None) -> Tuple[flo
"""
rect1, rect2 = None, None

filtered_frame = self.combined_filter(frame, display_figs=False)
filtered_frame = self.combined_filter(frame)[2]

max_brightness = max([b for b in filtered_frame[:, :, 0][0]])
lowerbound = max(0.84 * max_brightness, 120)
Expand Down
6 changes: 3 additions & 3 deletions perception/tasks/gate/GateSegmentationAlgoB.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from typing import Tuple

from perception.tasks.TaskPerceiver import TaskPerceiver
from perception.tasks.segmentation.combinedFilter import init_combined_filter
from perception.tasks.segmentation.combinedFilter import CombinedFilter
import numpy as np
import cv2 as cv
import statistics
Expand All @@ -12,7 +12,7 @@ class GateSegmentationAlgoB(TaskPerceiver):

def __init__(self):
super().__init__()
self.combined_filter = init_combined_filter()
self.combined_filter = CombinedFilter().combined_filter

def analyze(self, frame: np.ndarray, debug: bool) -> Tuple[float, float]:
"""Takes in the background removed image and returns the center between
Expand All @@ -24,7 +24,7 @@ def analyze(self, frame: np.ndarray, debug: bool) -> Tuple[float, float]:
(x,y) coordinate with center of gate
"""
gate_center = (250, 250)
filtered_frame = self.combined_filter(frame, display_figs=False)
filtered_frame = self.combined_filter(frame)[2]

max_brightness = max([b for b in filtered_frame[:, :, 0][0]])
lowerbound = max(0.84*max_brightness, 120)
Expand Down
6 changes: 3 additions & 3 deletions perception/tasks/gate/GateSegmentationAlgoC.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
from typing import Tuple
from collections import namedtuple

from perception.tasks.segmentation.combinedFilter import init_combined_filter
from perception.tasks.segmentation.combinedFilter import CombinedFilter
import numpy as np
import cv2 as cv

Expand All @@ -16,7 +16,7 @@ class GateSegmentationAlgoC(TaskPerceiver):
def __init__(self, alpha=0.1):
super().__init__()
self.__alpha = alpha
self.combined_filter = init_combined_filter()
self.combined_filter = CombinedFilter().combined_filter

# TODO: fix return typing
def analyze(self, frame: np.ndarray, debug: bool) -> Tuple[float, float]:
Expand All @@ -29,7 +29,7 @@ def analyze(self, frame: np.ndarray, debug: bool) -> Tuple[float, float]:
(x,y) coordinate with center of gate
"""
gate_center = self.output_class(250, 250)
filtered_frame = self.combined_filter(frame, display_figs=False)
filtered_frame = self.combined_filter(frame)[2]
filtered_frame_copies = [filtered_frame for _ in range(3)]
stacked_filter_frames = np.concatenate(filtered_frame_copies, axis=2)
mask = cv.inRange(
Expand Down
58 changes: 19 additions & 39 deletions perception/tasks/segmentation/combinedFilter.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,26 @@
import cv2
import numpy as np

# TODO: port to vis + TaskPerciever format or remove

from sys import argv as args
from perception.tasks.segmentation.aggregateRescaling import init_aggregate_rescaling
from perception.tasks.segmentation.peak_removal_adaptive_thresholding import filter_out_highest_peak_multidim
from perception.tasks.TaskPerceiver import TaskPerceiver
from typing import Dict, Tuple

if __name__ == "__main__":
if args[1] == '0':
cap = cv2.VideoCapture(0)
else:
cap = cv2.VideoCapture(args[1])
class CombinedFilter(TaskPerceiver):

def __init__(self):
super().__init__()
self.aggregate_rescaling = init_aggregate_rescaling(False)

# Returns a grayscale image
def init_combined_filter():
aggregate_rescaling = init_aggregate_rescaling(False)
def analyze(self, frame: np.ndarray, debug: bool, slider_vals: Dict[str, int]=None) -> Tuple[float, float]:
filtered_frames = self.combined_filter(frame)

def combined_filter(frame, custom_weights=None, display_figs=False, print_weights=False):
pca_frame = aggregate_rescaling(frame) # this resizes the frame within its body
if debug:
return None, filtered_frames # returns None because it's a more general algorithm
return None

def combined_filter(self, frame, custom_weights=None, print_weights=False):
pca_frame = self.aggregate_rescaling(frame) # this resizes the frame within its body

__, other_frame = filter_out_highest_peak_multidim(
np.dstack([pca_frame[:,:,0], frame]),
Expand All @@ -27,31 +29,9 @@ def combined_filter(frame, custom_weights=None, display_figs=False, print_weight

other_frame = other_frame[:, :, :1]

if display_figs:
cv2.imshow('original', frame)
cv2.imshow('Aggregate Rescaling via PCA', pca_frame)
cv2.imshow('Peak Removal Thresholding after PCA', other_frame)
return other_frame
return combined_filter
return [frame, pca_frame, other_frame]

if __name__ == "__main__":
ret = True
ret_tries = 0

# for i in range(3000):
# cap.read()

combined_filter = init_combined_filter()

while 1 and ret_tries < 50:
ret, frame = cap.read()
if ret:
frame = cv2.resize(frame, None, fx=0.4, fy=0.4)
filtered_frame = combined_filter(frame, display_figs=True)

ret_tries = 0
k = cv2.waitKey(60) & 0xff
if k == 27:
break
else:
ret_tries += 1
from perception.vis.vis import run

run(['..\..\..\data\GOPR1142.MP4'], CombinedFilter(), False)
5 changes: 5 additions & 0 deletions perception/vis/Visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ def three_stack(self, frames: List[np.ndarray]) -> List[np.ndarray]:
for frame in frames:
if len(frame.shape) == 2 or frame.shape[2] == 1:
frame = np.stack((frame, frame, frame), axis=2)
if len(frame.shape) == 4:
frame = frame[:, :, :, 0]
newLst.append((frame))
return newLst

Expand All @@ -33,6 +35,8 @@ def reshape(self, frames: List[np.ndarray]) -> List[np.ndarray]:
width = img.shape[1]
dim = (width, height)
for frame in frames:
if len(frame.shape) > 3:
raise Exception('All of your debug frames should have 2 or 3 dimensions')
if frame.shape[0] != height or frame.shape[1] != width:
frame = cv.resize(frame, dim, interpolation=cv.INTER_AREA)
newLst.append(frame)
Expand Down Expand Up @@ -64,6 +68,7 @@ def display(self, frames: List[np.ndarray]) -> np.ndarray:
to_add = frames[frame_num]
this_row = np.hstack((this_row, to_add))
else:
a = frames[0]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think this line is needed?

this_row = np.hstack((this_row, np.zeros(frames[0].shape, dtype=np.uint8)))
if not isinstance(to_show, int):
to_show = np.vstack((to_show, this_row))
Expand Down