Skip to content

一个轻量级的机器学习框架(纯python+numpy实现的迷你版scikit-learn)

Notifications You must be signed in to change notification settings

baojunshan/lemon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lemon 🍋🍋🍋

一个轻量级的机器学习框架(纯python+numpy实现的迷你版scikit-learn)

examples

from lemon.datasets import load_iris
from lemon.model_utils.model_selection import train_test_split
from lemon.supervised.naive_bayes import GaussianNB
from lemon.model_utils.metrics import accuracy


x, y = load_iris(x_y=True)
x_train, x_test, y_train, y_test = train_test_split(x, y, split_rate=0.8, random_state=2020)

model = GaussianNB()
model.fit(x_train, y_train)
pred = model.predict(x_test)

print(accuracy(y_test, pred))

当前进度

  • datasets(boston, breast_canner, iris, titanic, wine)
  • processing
    • preprocessing(binarizer, transformer, discretizer, encoding, scaler)
    • decomposition(pca, svd)
    • impute(simple-impute)
  • feature_utils
    • feature_selection (woe_iv)
  • model_utils
    • metrics
    • model_selection(psi)
  • supervised
    • linear_model(simple-linear, lasso, ridge, elastic-net, perceptron, logistic-regression)
    • naive_bayes(gaussian, multinomial)
    • neighbors(kd-tree-based-knn)
    • svm
    • tree
    • hmm
    • crf
    • ensemble
  • semi_supervised
    • label_propagation
    • louvain
    • pagerank
  • unsupervised
    • dbscan
    • kmeans(simple-kmeans, kmeans++, mini-batch-kmeans)

About

一个轻量级的机器学习框架(纯python+numpy实现的迷你版scikit-learn)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages