forked from microsoft/DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enable universal checkpoint for zero stage 1 (microsoft#4516)
* Enable uni_ckpt for z1 * Remove logging fix to seperate PR. Relocate conversion script to avoid logging circular import issue * Formatting fix * PR feedback * Handle replicated params * Detect bf16_optimizer * Docs * Fix docs
- Loading branch information
Showing
8 changed files
with
370 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
|
||
from functools import partial | ||
import argparse | ||
import glob | ||
import itertools | ||
import multiprocessing | ||
import os | ||
import re | ||
import shutil | ||
import torch | ||
import tqdm | ||
# from pprint import pprint | ||
|
||
from deepspeed.checkpoint import DeepSpeedCheckpoint | ||
from deepspeed.checkpoint import ( | ||
OPTIMIZER_STATE_DICT, | ||
BASE_OPTIMIZER_STATE, | ||
SINGLE_PARTITION_OF_FP32_GROUPS, | ||
PARAM_SLICE_MAPPINGS, | ||
PARAM_SHAPES, | ||
PARAM, | ||
CAT_DIM, | ||
VOCAB_DIVISIBILITY_PADDING_TENSOR, | ||
ORIGINAL_VOCAB_SIZE, | ||
UNIVERSAL_CHECKPOINT_INFO, | ||
VOCABULARY_PARAMETER_PATTERNS, | ||
PIPELINE_REPLICATED_PARAMETER_PATTERNS, | ||
TP_REPLICATED_PARAMETER_PATTERNS, | ||
PARAMETER_TO_AVERAGE_PATTERNS, | ||
PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, | ||
) | ||
|
||
|
||
def parse_arguments(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--input_folder', type=str, required=True, help='Input DeepSpeed Checkpoint folder') | ||
parser.add_argument('--output_folder', type=str, required=True, help='Output DeepSpeed checkpoint folder') | ||
parser.add_argument('--num_extract_workers', | ||
default=4, | ||
type=int, | ||
help='How many parallel processes to extract zero shards') | ||
parser.add_argument( | ||
'--num_merge_workers', | ||
default=2, | ||
type=int, | ||
help= | ||
'How many parallel processes to merge tp slices (more memory intensive, use much fewer than --num_extract_workers))' | ||
) | ||
parser.add_argument('--keep_temp_folder', | ||
action='store_true', | ||
help='Preserve temporary folder of intermediate checkpoint slice files. Useful for debugging.') | ||
args = parser.parse_args() | ||
print(f'args = {args}') | ||
return args | ||
|
||
|
||
def _create_checkpoint_paths(base_folder, iteration, tp_degree, pp_degree): | ||
path_list = [] | ||
iter_folder = f'iter_{iteration:07d}' | ||
for i in range(0, tp_degree): | ||
path_list.append([]) | ||
for j in range(0, pp_degree): | ||
rank_folder = f'mp_rank_{i:02d}' if pp_degree == 1 else f'mp_rank_{i:02d}_{j:03d}' | ||
ckpt_path = os.path.join(rank_folder, 'model_optim_rng.pt') | ||
path_list[i].append(os.path.join(base_folder, iter_folder, ckpt_path)) | ||
|
||
return path_list | ||
|
||
|
||
def _save_checkpoint(file_path, chkpt_sd): | ||
dir, _ = os.path.split(file_path) | ||
os.makedirs(dir, exist_ok=True) | ||
torch.save(chkpt_sd, file_path) | ||
|
||
|
||
def extract_zero_shards(dir, ds_checkpoint, indices_3D): | ||
pp_index, tp_index, dp_index = indices_3D | ||
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index) | ||
|
||
# pprint(f"Processing {dp_index=} {pp_index=}, {tp_index=}") | ||
|
||
optim_sd = sd[OPTIMIZER_STATE_DICT] | ||
param_slice_mappings = optim_sd[PARAM_SLICE_MAPPINGS] | ||
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | ||
pipeline_replicated_params = universal_checkpoint_info.get(PIPELINE_REPLICATED_PARAMETER_PATTERNS, []) | ||
# print(f'{pipeline_replicated_params=}') | ||
|
||
# dict | ||
state_groups = optim_sd[BASE_OPTIMIZER_STATE]["state"] | ||
# list | ||
fp32_groups = optim_sd[SINGLE_PARTITION_OF_FP32_GROUPS] | ||
param_groups_cnt = len(state_groups) | ||
|
||
for param_group_id in range(param_groups_cnt): | ||
|
||
flat_state = dict( | ||
exp_avg=state_groups[param_group_id]["exp_avg"], | ||
exp_avg_sq=state_groups[param_group_id]["exp_avg_sq"], | ||
fp32=fp32_groups[param_group_id], | ||
) | ||
|
||
for name, fragment_mapping in param_slice_mappings[param_group_id].items(): | ||
if pp_index > 0 and any(re.match(pattern, name) for pattern in pipeline_replicated_params): | ||
# Skip tied weights that are replicated in first and last pp stages | ||
continue | ||
|
||
# pprint(f"dpt{dp_index}{pp_index}{tp_index} {param_group_id} {name} => {fragment_mapping.start}:{fragment_mapping.numel}") | ||
for state_key in flat_state.keys(): | ||
dump_param_fragment(dir, tp_index, dp_index, state_key, flat_state[state_key], name, | ||
fragment_mapping.start, fragment_mapping.numel) | ||
|
||
|
||
cnt = 0 | ||
|
||
|
||
def dump_param_fragment(dir, tp_index, dp_index, state_name, state_flat_tensor, param_name, offset, numel): | ||
|
||
global cnt # temp hack | ||
|
||
param_base_path = os.path.join(dir, param_name, str(tp_index)) | ||
os.makedirs(param_base_path, exist_ok=True) | ||
|
||
cnt += 1 | ||
counter = f"{dp_index:0>2d}" | ||
|
||
path = os.path.join(param_base_path, f"{state_name}.{counter}") | ||
|
||
#print(f"{param_name}: {offset}: {numel} => {path}") | ||
|
||
t = state_flat_tensor.narrow(0, offset, numel).clone() | ||
_save_checkpoint(path, t) | ||
|
||
|
||
def _merge_zero_shards(param_base_path, state, tp_degree, slice_shape): | ||
slices = [] | ||
for tp_index in range(tp_degree): | ||
prefix_path = os.path.join(param_base_path, str(tp_index), f"{state}") | ||
paths = sorted(list(glob.glob(f"{prefix_path}.*"))) | ||
shards = [torch.load(p) for p in paths] | ||
slice = torch.cat(shards, dim=0).reshape(slice_shape) | ||
slices.append(slice) | ||
|
||
return slices | ||
|
||
|
||
def _get_vocab_divisibility_padding_tensor(universal_checkpoint_info, padded_vocab_tensor): | ||
original_vocab_size = universal_checkpoint_info.get(ORIGINAL_VOCAB_SIZE) | ||
if padded_vocab_tensor.shape[0] > original_vocab_size: | ||
return padded_vocab_tensor[-1] | ||
else: | ||
return torch.zeros(padded_vocab_tensor.shape[1]) | ||
|
||
|
||
def merge_tp_slices(ds_checkpoint, dir, slice_dir, tp_degree, name_and_shape): | ||
name, shape = name_and_shape | ||
slice_base_path = os.path.join(slice_dir, name) | ||
param_base_path = os.path.join(dir, name) | ||
|
||
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | ||
replicated_parameters = universal_checkpoint_info.get(TP_REPLICATED_PARAMETER_PATTERNS, []) | ||
parameters_to_average = universal_checkpoint_info.get(PARAMETER_TO_AVERAGE_PATTERNS, []) | ||
parameters_with_row_parallelism = universal_checkpoint_info.get(PARAMETER_WITH_ROW_PARALLELISM_PATTERNS, []) | ||
vocabulary_parameters = universal_checkpoint_info.get(VOCABULARY_PARAMETER_PATTERNS, []) | ||
for state in ("fp32", "exp_avg", "exp_avg_sq"): | ||
slices = _merge_zero_shards(slice_base_path, state, tp_degree, shape) | ||
final_path = os.path.join(param_base_path, f"{state}.pt") | ||
|
||
#print(f"Expected shape: {shape}") | ||
#print(f"Fragment sizes:", list(frag.shape for frag in slices)) | ||
ckpt_dict = {} | ||
if any(re.match(pattern, name) for pattern in replicated_parameters): | ||
if len(slices) > 1: | ||
assert all([slices[0].equal(other_slice) for other_slice in slices[1:]]) | ||
param = slices[0] | ||
# print(f'replicate {name} using first slice') | ||
elif any(re.match(pattern, name) for pattern in parameters_to_average): | ||
param = sum(slices) / len(slices) | ||
# print(f'merge {name} using average') | ||
else: | ||
cat_dim = 1 if any(re.match(pattern, name) for pattern in parameters_with_row_parallelism) else 0 | ||
# print(f"merge {name} with CAT DIM: {cat_dim}") | ||
param = torch.cat(slices, dim=cat_dim) | ||
ckpt_dict[CAT_DIM] = cat_dim | ||
|
||
if any(re.match(pattern, name) for pattern in vocabulary_parameters): | ||
#print(f"Before {param.shape=}") | ||
# strip padding | ||
#param = _strip_vocab_padding(ds_checkpoint, param) | ||
ckpt_dict[VOCAB_DIVISIBILITY_PADDING_TENSOR] = _get_vocab_divisibility_padding_tensor( | ||
universal_checkpoint_info, param) | ||
#print(f"After {param.shape=}") | ||
|
||
#print(f"Final shape: {param.shape}") | ||
ckpt_dict[PARAM] = param | ||
_save_checkpoint(final_path, ckpt_dict) | ||
|
||
|
||
def _get_chunks(l, n): | ||
for i in range(0, len(l), n): | ||
yield l[i:i + n] | ||
|
||
|
||
def _do_parallel_work(do_work, work_chunks, num_workers): | ||
pool = multiprocessing.Pool(num_workers) | ||
for batch in tqdm.tqdm(work_chunks): | ||
pool.map(do_work, batch) | ||
pool.close() | ||
pool.join() | ||
|
||
|
||
def _extract_zero_shard_files(args, ds_checkpoint, temp_dir): | ||
_3d_range_list = list( | ||
itertools.product(range(ds_checkpoint.pp_degree), range(ds_checkpoint.tp_degree), | ||
range(ds_checkpoint.dp_degree))) | ||
# pprint(f'{_3d_range_list=}') | ||
work_chunks = list(_get_chunks(_3d_range_list, args.num_extract_workers)) | ||
# pprint(f'{work_chunks=}') | ||
|
||
# extract_zero_shards(temp_dir, ds_checkpoint, _3d_range_list[0]) | ||
do_work = partial(extract_zero_shards, temp_dir, ds_checkpoint) | ||
_do_parallel_work(do_work, work_chunks, args.num_extract_workers) | ||
|
||
|
||
def _merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir): | ||
work_chunks = list(_get_chunks(list(slice_shapes.items()), args.num_merge_workers)) | ||
#pprint(work_chunks) | ||
zero_output_folder = os.path.join(args.output_folder, "zero") | ||
do_work = partial(merge_tp_slices, ds_checkpoint, zero_output_folder, temp_dir, ds_checkpoint.tp_degree) | ||
_do_parallel_work(do_work, work_chunks, args.num_merge_workers) | ||
|
||
|
||
def _save_optimizer_state(args, ds_checkpoint): | ||
sharded_states = [BASE_OPTIMIZER_STATE, PARAM_SLICE_MAPPINGS, SINGLE_PARTITION_OF_FP32_GROUPS] | ||
sd = ds_checkpoint.get_zero_checkpoint_state(pp_index=0, tp_index=0, dp_index=0) | ||
|
||
optim_sd = sd[OPTIMIZER_STATE_DICT] | ||
output_sd = {k: v for k, v in optim_sd.items() if k not in sharded_states} | ||
zero_output_folder = os.path.join(args.output_folder, "zero") | ||
output_file_path = os.path.join(zero_output_folder, f"optimizer_state.pt") | ||
_save_checkpoint(output_file_path, output_sd) | ||
|
||
|
||
def _check_for_required_state(ds_checkpoint): | ||
universal_checkpoint_info = ds_checkpoint.get_checkpoint_info(UNIVERSAL_CHECKPOINT_INFO) | ||
assert universal_checkpoint_info is not None, f'Required {UNIVERSAL_CHECKPOINT_INFO} state is missing in checkpoint. Verify that client creates this state.' | ||
|
||
|
||
def main(): | ||
print(f'Convert DeepSpeed Checkpoint to Universal Checkpoint') | ||
|
||
args = parse_arguments() | ||
print(f'Converting DeepSpeed checkpoint in {args.input_folder} to Universal checkpoint in {args.output_folder}') | ||
|
||
ds_checkpoint = DeepSpeedCheckpoint(args.input_folder) | ||
_check_for_required_state(ds_checkpoint) | ||
|
||
iteration = ds_checkpoint.get_iteration() | ||
#_create_latest_file(args.output_folder, iteration) | ||
checkpoint_paths = _create_checkpoint_paths(args.output_folder, iteration, ds_checkpoint.tp_degree, | ||
ds_checkpoint.pp_degree) | ||
|
||
slice_shapes = [] | ||
for mp_rank_file in ds_checkpoint.mp_rank_files: | ||
mp_sd = torch.load(mp_rank_file, map_location=torch.device('cpu')) | ||
slice_shapes += mp_sd[PARAM_SHAPES] | ||
|
||
# fix back to normal flat dict, merge duplicates for tp>1 | ||
slice_shapes = dict((k, v) for d in slice_shapes for k, v in d.items()) | ||
temp_dir = os.path.join(args.output_folder, 'tmp') | ||
|
||
print('*** 1. Extracting ZeRO fragments') | ||
_extract_zero_shard_files(args, ds_checkpoint, temp_dir) | ||
|
||
print('*** 2. Merging slices') | ||
_merge_tp_slice_files(args, ds_checkpoint, slice_shapes, temp_dir) | ||
|
||
print('*** 3. Saving common optimizer states') | ||
_save_optimizer_state(args, ds_checkpoint) | ||
|
||
if not args.keep_temp_folder: | ||
shutil.rmtree(temp_dir, ignore_errors=True) | ||
|
||
# Copy mp* files into output folder | ||
for f in glob.glob(os.path.join(args.input_folder, 'mp*')): | ||
shutil.copy2(f, args.output_folder) | ||
|
||
# Update latest to output folder | ||
checkpoint_root_folder, step_folder = os.path.split(args.output_folder) | ||
latest_file = os.path.join(checkpoint_root_folder, 'latest_universal') | ||
with open(latest_file, "w") as f: | ||
f.write(step_folder) | ||
|
||
print('*** Done!') | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.