-
-
Notifications
You must be signed in to change notification settings - Fork 899
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add e2e smoke tests for llama liger integration (#1884)
* add e2e smoke tests for llama liger integration * fix import * don't use __main__ for test * consolidate line
- Loading branch information
Showing
3 changed files
with
112 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
""" | ||
Simple end-to-end test for Liger integration | ||
""" | ||
|
||
import unittest | ||
from pathlib import Path | ||
|
||
from axolotl.cli import load_datasets | ||
from axolotl.common.cli import TrainerCliArgs | ||
from axolotl.train import train | ||
from axolotl.utils.config import normalize_config | ||
from axolotl.utils.dict import DictDefault | ||
|
||
from ..utils import with_temp_dir | ||
|
||
|
||
class LigerIntegrationTestCase(unittest.TestCase): | ||
""" | ||
e2e tests for liger integration with Axolotl | ||
""" | ||
|
||
@with_temp_dir | ||
def test_llama_wo_flce(self, temp_dir): | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"plugins": [ | ||
"axolotl.integrations.liger.LigerPlugin", | ||
], | ||
"liger_rope": True, | ||
"liger_rms_norm": True, | ||
"liger_swiglu": True, | ||
"liger_cross_entropy": True, | ||
"liger_fused_linear_cross_entropy": False, | ||
"sequence_len": 1024, | ||
"val_set_size": 0.1, | ||
"special_tokens": { | ||
"unk_token": "<unk>", | ||
"bos_token": "<s>", | ||
"eos_token": "</s>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"num_epochs": 1, | ||
"micro_batch_size": 8, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
"save_safetensors": True, | ||
"bf16": "auto", | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "model.safetensors").exists() | ||
|
||
@with_temp_dir | ||
def test_llama_w_flce(self, temp_dir): | ||
cfg = DictDefault( | ||
{ | ||
"base_model": "JackFram/llama-68m", | ||
"tokenizer_type": "LlamaTokenizer", | ||
"plugins": [ | ||
"axolotl.integrations.liger.LigerPlugin", | ||
], | ||
"liger_rope": True, | ||
"liger_rms_norm": True, | ||
"liger_swiglu": True, | ||
"liger_cross_entropy": False, | ||
"liger_fused_linear_cross_entropy": True, | ||
"sequence_len": 1024, | ||
"val_set_size": 0.1, | ||
"special_tokens": { | ||
"unk_token": "<unk>", | ||
"bos_token": "<s>", | ||
"eos_token": "</s>", | ||
}, | ||
"datasets": [ | ||
{ | ||
"path": "mhenrichsen/alpaca_2k_test", | ||
"type": "alpaca", | ||
}, | ||
], | ||
"num_epochs": 1, | ||
"micro_batch_size": 8, | ||
"gradient_accumulation_steps": 1, | ||
"output_dir": temp_dir, | ||
"learning_rate": 0.00001, | ||
"optimizer": "adamw_torch", | ||
"lr_scheduler": "cosine", | ||
"save_safetensors": True, | ||
"bf16": "auto", | ||
} | ||
) | ||
normalize_config(cfg) | ||
cli_args = TrainerCliArgs() | ||
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args) | ||
|
||
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta) | ||
assert (Path(temp_dir) / "model.safetensors").exists() |