Skip to content

asutera/paper-connectomics

Repository files navigation

Simple connectome inference from partial correlation statistics in calcium imaging

Antonio Sutera, Arnaud Joly, Vincent François-Valet, Aaron Qiu, Gilles Louppe, Damien Ernst and Pierre Geurts.

In this work, we propose a simple, but yet efficient, method for the problem of connectome inference in calcium imaging data. The proposed algorithm is made of two steps. First, processing the raw signals to detect neural peak activities. Second, inferring the degree of association between neurons from partial correlation statistics. This paper summarizes the methodology that led us to win the Connectomics Challenge, proposes a simplified version of our method and finally discusses our results with respect to other inference methods.


About

Connectomics paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published