Skip to content

Commit

Permalink
Merge branch 'main' into pandas_wrapper
Browse files Browse the repository at this point in the history
  • Loading branch information
nick-harder authored Nov 21, 2024
2 parents bfda716 + e41ed04 commit bca37cc
Show file tree
Hide file tree
Showing 6 changed files with 241 additions and 211 deletions.
4 changes: 1 addition & 3 deletions assume/scenario/loader_amiris.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ def add_agent_to_world(
match agent["Type"]:
case "SupportPolicy":
support_data = agent["Attributes"]["SetSupportData"]
supports |= {x.pop("Set"): x for x in support_data}
supports |= {x.pop("PolicySet"): x for x in support_data}
world.add_unit_operator(agent["Id"])

for name, support in supports.items():
Expand Down Expand Up @@ -480,14 +480,12 @@ def load_amiris(
start += timedelta(minutes=2)
end += timedelta(minutes=2)
sim_id = f"{scenario}_{study_case}"
save_interval = amiris_scenario["GeneralProperties"]["Output"]["Interval"]
prices = {}
index = pd.date_range(start=start, end=end, freq="1h", inclusive="left")
world.bidding_strategies["support"] = SupportStrategy
world.setup(
start=start,
end=end,
save_frequency_hours=save_interval,
simulation_id=sim_id,
)
# helper dict to map trader markups/markdowns to powerplants
Expand Down
3 changes: 3 additions & 0 deletions docs/source/release_notes.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,9 @@ Upcoming Release
The features in this section are not released yet, but will be part of the next release! To use the features already you have to install the main branch,
e.g. ``pip install git+https://github.com/assume-framework/assume``

**Bugfixes:**
- **Tutorial 07**: Aligned Amiris loader with changes in format in Amiris compare (https://gitlab.com/fame-framework/fame-io/-/issues/203 and https://gitlab.com/fame-framework/fame-io/-/issues/208)

v0.4.3 - (11th November 2024)
===========================================

Expand Down
178 changes: 83 additions & 95 deletions examples/inputs/example_02a/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2,136 +2,124 @@
#
# SPDX-License-Identifier: AGPL-3.0-or-later

tiny:
start_date: 2019-01-01 00:00
end_date: 2019-01-05 00:00
time_step: 1h
save_frequency_hours: null
learning_mode: True

base:
end_date: 2019-03-31 00:00
learning_config:
continue_learning: False
trained_policies_save_path: null
max_bid_price: 100
algorithm: matd3
actor_architecture: mlp
learning_rate: 0.001
training_episodes: 10
episodes_collecting_initial_experience: 3
train_freq: 24h
gradient_steps: -1
batch_size: 64
gamma: 0.99
batch_size: 256
continue_learning: false
device: cpu
noise_sigma: 0.1
noise_scale: 1
episodes_collecting_initial_experience: 5
gamma: 0.99
gradient_steps: -1
learning_rate: 0.001
max_bid_price: 100
noise_dt: 1
noise_scale: 1
noise_sigma: 0.1
train_freq: 24h
trained_policies_save_path: null
training_episodes: 100
validation_episodes_interval: 5

learning_mode: true
markets_config:
EOM:
market_mechanism: pay_as_clear
maximum_bid_price: 3000
maximum_bid_volume: 100000
minimum_bid_price: -500
opening_duration: 1h
opening_frequency: 1h
operator: EOM_operator
price_unit: EUR/MWh
product_type: energy
products:
- duration: 1h
count: 1
first_delivery: 1h
opening_frequency: 1h
opening_duration: 1h
- count: 1
duration: 1h
first_delivery: 1h
volume_unit: MWh
maximum_bid_volume: 100000
maximum_bid_price: 3000
minimum_bid_price: -500
price_unit: EUR/MWh
market_mechanism: pay_as_clear


base:
save_frequency_hours: null
start_date: 2019-03-01 00:00
end_date: 2019-03-31 00:00
time_step: 1h
save_frequency_hours: null
learning_mode: True

base_lstm:
end_date: 2019-03-31 00:00
learning_config:
continue_learning: False
trained_policies_save_path: null
max_bid_price: 100
actor_architecture: lstm
algorithm: matd3
actor_architecture: mlp
learning_rate: 0.001
training_episodes: 50
episodes_collecting_initial_experience: 5
train_freq: 24h
gradient_steps: -1
batch_size: 256
gamma: 0.99
continue_learning: false
device: cpu
noise_sigma: 0.1
noise_scale: 1
noise_dt: 1
validation_episodes_interval: 5
early_stopping_steps: 10
early_stopping_threshold: 0.05

episodes_collecting_initial_experience: 5
gamma: 0.99
gradient_steps: -1
learning_rate: 0.001
max_bid_price: 100
noise_dt: 1
noise_scale: 1
noise_sigma: 0.1
train_freq: 24h
trained_policies_save_path: null
training_episodes: 50
validation_episodes_interval: 5
learning_mode: true
markets_config:
EOM:
market_mechanism: pay_as_clear
maximum_bid_price: 3000
maximum_bid_volume: 100000
minimum_bid_price: -500
opening_duration: 1h
opening_frequency: 1h
operator: EOM_operator
price_unit: EUR/MWh
product_type: energy
products:
- duration: 1h
count: 1
first_delivery: 1h
opening_frequency: 1h
opening_duration: 1h
- count: 1
duration: 1h
first_delivery: 1h
volume_unit: MWh
maximum_bid_volume: 100000
maximum_bid_price: 3000
minimum_bid_price: -500
price_unit: EUR/MWh
market_mechanism: pay_as_clear

base_lstm:
save_frequency_hours: null
start_date: 2019-03-01 00:00
end_date: 2019-03-31 00:00
time_step: 1h
save_frequency_hours: null
learning_mode: True

tiny:
end_date: 2019-01-05 00:00
learning_config:
continue_learning: False
trained_policies_save_path: null
max_bid_price: 100
actor_architecture: mlp
algorithm: matd3
actor_architecture: lstm
learning_rate: 0.001
training_episodes: 50
episodes_collecting_initial_experience: 5
train_freq: 24h
gradient_steps: -1
batch_size: 256
gamma: 0.99
batch_size: 64
continue_learning: false
device: cpu
noise_sigma: 0.1
noise_scale: 1
episodes_collecting_initial_experience: 3
gamma: 0.99
gradient_steps: -1
learning_rate: 0.001
max_bid_price: 100
noise_dt: 1
noise_scale: 1
noise_sigma: 0.1
train_freq: 24h
trained_policies_save_path: null
training_episodes: 10
validation_episodes_interval: 5
early_stopping_steps: 10
early_stopping_threshold: 0.05

learning_mode: true
markets_config:
EOM:
market_mechanism: pay_as_clear
maximum_bid_price: 3000
maximum_bid_volume: 100000
minimum_bid_price: -500
opening_duration: 1h
opening_frequency: 1h
operator: EOM_operator
price_unit: EUR/MWh
product_type: energy
products:
- duration: 1h
count: 1
first_delivery: 1h
opening_frequency: 1h
opening_duration: 1h
- count: 1
duration: 1h
first_delivery: 1h
volume_unit: MWh
maximum_bid_volume: 100000
maximum_bid_price: 3000
minimum_bid_price: -500
price_unit: EUR/MWh
market_mechanism: pay_as_clear
save_frequency_hours: null
start_date: 2019-01-01 00:00
time_step: 1h
Loading

0 comments on commit bca37cc

Please sign in to comment.