Skip to content

Commit

Permalink
Merge pull request #17 from alteryx/invalid_target_data_check
Browse files Browse the repository at this point in the history
invalid_target_data_check added
  • Loading branch information
NabilFayak authored Aug 17, 2023
2 parents 6e2bc39 + ff9ff13 commit 69ca038
Show file tree
Hide file tree
Showing 15 changed files with 2,044 additions and 0 deletions.
3 changes: 3 additions & 0 deletions checkmates/data_checks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,9 @@
from checkmates.data_checks.checks.multicollinearity_data_check import (
MulticollinearityDataCheck,
)
from checkmates.data_checks.checks.invalid_target_data_check import (
InvalidTargetDataCheck,
)


from checkmates.data_checks.datacheck_meta.utils import handle_data_check_action_code
448 changes: 448 additions & 0 deletions checkmates/data_checks/checks/invalid_target_data_check.py

Large diffs are not rendered by default.

2 changes: 2 additions & 0 deletions checkmates/exceptions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,6 @@
DataCheckInitError,
MissingComponentError,
ValidationErrorCode,
ObjectiveCreationError,
ObjectiveNotFoundError,
)
10 changes: 10 additions & 0 deletions checkmates/exceptions/exceptions.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,16 @@ class MissingComponentError(Exception):
pass


class ObjectiveNotFoundError(Exception):
"""Exception to raise when specified objective does not exist."""

pass


class ObjectiveCreationError(Exception):
"""Exception when get_objective tries to instantiate an objective and required args are not provided."""


class DataCheckInitError(Exception):
"""Exception raised when a data check can't initialize with the parameters given."""

Expand Down
20 changes: 20 additions & 0 deletions checkmates/objectives/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
"""General Directory for CheckMates Objectives."""

from checkmates.objectives.objective_base import ObjectiveBase
from checkmates.objectives.regression_objective import RegressionObjective

from checkmates.objectives.utils import get_objective
from checkmates.objectives.utils import get_default_primary_search_objective
from checkmates.objectives.utils import get_non_core_objectives
from checkmates.objectives.utils import get_core_objectives


from checkmates.objectives.standard_metrics import RootMeanSquaredLogError
from checkmates.objectives.standard_metrics import MeanSquaredLogError

from checkmates.objectives.binary_classification_objective import (
BinaryClassificationObjective,
)
from checkmates.objectives.multiclass_classification_objective import (
MulticlassClassificationObjective,
)
84 changes: 84 additions & 0 deletions checkmates/objectives/binary_classification_objective.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
"""Base class for all binary classification objectives."""
import numpy as np
from scipy.optimize import differential_evolution

from checkmates.objectives.objective_base import ObjectiveBase
from checkmates.problem_types import ProblemTypes


class BinaryClassificationObjective(ObjectiveBase):
"""Base class for all binary classification objectives."""

problem_types = [ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]

"""[ProblemTypes.BINARY, ProblemTypes.TIME_SERIES_BINARY]"""

@property
def can_optimize_threshold(cls):
"""Returns a boolean determining if we can optimize the binary classification objective threshold.
This will be false for any objective that works directly with
predicted probabilities, like log loss and AUC. Otherwise, it
will be true.
Returns:
bool: Whether or not an objective can be optimized.
"""
return not cls.score_needs_proba

def optimize_threshold(self, ypred_proba, y_true, X=None):
"""Learn a binary classification threshold which optimizes the current objective.
Args:
ypred_proba (pd.Series): The classifier's predicted probabilities
y_true (pd.Series): The ground truth for the predictions.
X (pd.DataFrame, optional): Any extra columns that are needed from training data.
Returns:
Optimal threshold for this objective.
Raises:
RuntimeError: If objective cannot be optimized.
"""
ypred_proba = self._standardize_input_type(ypred_proba)
y_true = self._standardize_input_type(y_true)
if X is not None:
X = self._standardize_input_type(X)

if not self.can_optimize_threshold:
raise RuntimeError("Trying to optimize objective that can't be optimized!")

def cost(threshold):
y_predicted = self.decision_function(
ypred_proba=ypred_proba,
threshold=threshold[0],
X=X,
)
cost = self.objective_function(y_true, y_predicted, X=X)
return -cost if self.greater_is_better else cost

optimal = differential_evolution(cost, bounds=[(0, 1)], seed=0, maxiter=250)

return optimal.x[0]

def decision_function(self, ypred_proba, threshold=0.5, X=None):
"""Apply a learned threshold to predicted probabilities to get predicted classes.
Args:
ypred_proba (pd.Series, np.ndarray): The classifier's predicted probabilities
threshold (float, optional): Threshold used to make a prediction. Defaults to 0.5.
X (pd.DataFrame, optional): Any extra columns that are needed from training data.
Returns:
predictions
"""
ypred_proba = self._standardize_input_type(ypred_proba)
return ypred_proba > threshold

def validate_inputs(self, y_true, y_predicted):
"""Validate inputs for scoring."""
super().validate_inputs(y_true, y_predicted)
if len(np.unique(y_true)) > 2:
raise ValueError("y_true contains more than two unique values")
if len(np.unique(y_predicted)) > 2 and not self.score_needs_proba:
raise ValueError("y_predicted contains more than two unique values")
10 changes: 10 additions & 0 deletions checkmates/objectives/multiclass_classification_objective.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
"""Base class for all multiclass classification objectives."""
from checkmates.objectives.objective_base import ObjectiveBase
from checkmates.problem_types import ProblemTypes


class MulticlassClassificationObjective(ObjectiveBase):
"""Base class for all multiclass classification objectives."""

problem_types = [ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]
"""[ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_MULTICLASS]"""
217 changes: 217 additions & 0 deletions checkmates/objectives/objective_base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
"""Base class for all objectives."""
from abc import ABC, abstractmethod

import numpy as np
import pandas as pd

from checkmates.problem_types import handle_problem_types
from checkmates.utils import classproperty


class ObjectiveBase(ABC):
"""Base class for all objectives."""

problem_types = None

@property
@classmethod
@abstractmethod
def name(cls):
"""Returns a name describing the objective."""

@property
@classmethod
@abstractmethod
def greater_is_better(cls):
"""Returns a boolean determining if a greater score indicates better model performance."""

@property
@classmethod
@abstractmethod
def score_needs_proba(cls):
"""Returns a boolean determining if the score() method needs probability estimates.
This should be true for objectives which work with predicted
probabilities, like log loss or AUC, and false for objectives
which compare predicted class labels to the actual labels, like
F1 or correlation.
"""

@property
@classmethod
@abstractmethod
def perfect_score(cls):
"""Returns the score obtained by evaluating this objective on a perfect model."""

@property
@classmethod
@abstractmethod
def is_bounded_like_percentage(cls):
"""Returns whether this objective is bounded between 0 and 1, inclusive."""

@property
@classmethod
@abstractmethod
def expected_range(cls):
"""Returns the expected range of the objective, which is not necessarily the possible ranges.
For example, our expected R2 range is from [-1, 1], although the
actual range is (-inf, 1].
"""

@classmethod
@abstractmethod
def objective_function(
cls,
y_true,
y_predicted,
y_train=None,
X=None,
sample_weight=None,
):
"""Computes the relative value of the provided predictions compared to the actual labels, according a specified metric.
Args:
y_predicted (pd.Series): Predicted values of length [n_samples]
y_true (pd.Series): Actual class labels of length [n_samples]
y_train (pd.Series): Observed training values of length [n_samples]
X (pd.DataFrame or np.ndarray): Extra data of shape [n_samples, n_features] necessary to calculate score
sample_weight (pd.DataFrame or np.ndarray): Sample weights used in computing objective value result
Returns:
Numerical value used to calculate score
"""

@classproperty
def positive_only(cls):
"""If True, this objective is only valid for positive data. Defaults to False."""
return False

def score(self, y_true, y_predicted, y_train=None, X=None, sample_weight=None):
"""Returns a numerical score indicating performance based on the differences between the predicted and actual values.
Args:
y_predicted (pd.Series): Predicted values of length [n_samples]
y_true (pd.Series): Actual class labels of length [n_samples]
y_train (pd.Series): Observed training values of length [n_samples]
X (pd.DataFrame or np.ndarray): Extra data of shape [n_samples, n_features] necessary to calculate score
sample_weight (pd.DataFrame or np.ndarray): Sample weights used in computing objective value result
Returns:
score
"""
if X is not None:
X = self._standardize_input_type(X)
if y_train is not None:
y_train = self._standardize_input_type(y_train)
y_true = self._standardize_input_type(y_true)
y_predicted = self._standardize_input_type(y_predicted)
self.validate_inputs(y_true, y_predicted)
return self.objective_function(
y_true,
y_predicted,
y_train=y_train,
X=X,
sample_weight=sample_weight,
)

@staticmethod
def _standardize_input_type(input_data):
"""Standardize input to pandas for scoring.
Args:
input_data (list, pd.DataFrame, pd.Series, or np.ndarray): A matrix of predictions or predicted probabilities
Returns:
pd.DataFrame or pd.Series: a pd.Series, or pd.DataFrame object if predicted probabilities were provided.
"""
if isinstance(input_data, (pd.Series, pd.DataFrame)):
return input_data
if isinstance(input_data, list):
if isinstance(input_data[0], list):
return pd.DataFrame(input_data)
return pd.Series(input_data)
if isinstance(input_data, np.ndarray):
if len(input_data.shape) == 1:
return pd.Series(input_data)
return pd.DataFrame(input_data)

def validate_inputs(self, y_true, y_predicted):
"""Validates the input based on a few simple checks.
Args:
y_predicted (pd.Series, or pd.DataFrame): Predicted values of length [n_samples].
y_true (pd.Series): Actual class labels of length [n_samples].
Raises:
ValueError: If the inputs are malformed.
"""
if y_predicted.shape[0] != y_true.shape[0]:
raise ValueError(
"Inputs have mismatched dimensions: y_predicted has shape {}, y_true has shape {}".format(
len(y_predicted),
len(y_true),
),
)
if len(y_true) == 0:
raise ValueError("Length of inputs is 0")

if isinstance(y_true, pd.DataFrame):
y_true = y_true.to_numpy().flatten()
if np.isnan(y_true).any() or np.isinf(y_true).any():
raise ValueError("y_true contains NaN or infinity")

if isinstance(y_predicted, pd.DataFrame):
y_predicted = y_predicted.to_numpy().flatten()
if np.isnan(y_predicted).any() or np.isinf(y_predicted).any():
raise ValueError("y_predicted contains NaN or infinity")
if self.score_needs_proba and np.any([(y_predicted < 0) | (y_predicted > 1)]):
raise ValueError(
"y_predicted contains probability estimates not within [0, 1]",
)

@classmethod
def calculate_percent_difference(cls, score, baseline_score):
"""Calculate the percent difference between scores.
Args:
score (float): A score. Output of the score method of this objective.
baseline_score (float): A score. Output of the score method of this objective. In practice,
this is the score achieved on this objective with a baseline estimator.
Returns:
float: The percent difference between the scores. Note that for objectives that can be interpreted
as percentages, this will be the difference between the reference score and score. For all other
objectives, the difference will be normalized by the reference score.
"""
if pd.isna(score) or pd.isna(baseline_score):
return np.nan

if np.isclose(baseline_score - score, 0, atol=1e-10):
return 0

# Return inf when dividing by 0
if (
np.isclose(baseline_score, 0, atol=1e-10)
and not cls.is_bounded_like_percentage
):
return np.inf

decrease = False
if (baseline_score > score and cls.greater_is_better) or (
baseline_score < score and not cls.greater_is_better
):
decrease = True

difference = baseline_score - score
change = (
difference
if cls.is_bounded_like_percentage
else difference / baseline_score
)
return 100 * (-1) ** (decrease) * np.abs(change)

@classmethod
def is_defined_for_problem_type(cls, problem_type):
"""Returns whether or not an objective is defined for a problem type."""
return handle_problem_types(problem_type) in cls.problem_types
10 changes: 10 additions & 0 deletions checkmates/objectives/regression_objective.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
"""Base class for all regression objectives."""
from checkmates.objectives.objective_base import ObjectiveBase
from checkmates.problem_types import ProblemTypes


class RegressionObjective(ObjectiveBase):
"""Base class for all regression objectives."""

problem_types = [ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION]
"""[ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION]"""
Loading

0 comments on commit 69ca038

Please sign in to comment.