Skip to content

build the ResSys with FunkSVD, FM, itemCF/UserCF, wide&deep with residual net, deepFM with residual net and etc. I try to collect all the algorithm as soon as possible.

Notifications You must be signed in to change notification settings

aivolcano/RecommendSYS_with_movielens

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RecommendSYS

build the ResSys with FunkSVD, FM, itemCF/UserCF, wide&deep with residual net, deepFM with residual net and etc. I try to collect all the algorithm as soon as possible.

推荐算法体系:

  • 基于标签推荐:SimpleTagBased,NormTagBased,TagBased-TFIDF
  • 于内容的推荐(静态推荐) 新产品上线(冷启动问题)
  • 基于协同过滤:User-CF, Item-CF(动态推荐)
  • CTR预估:GBDT+LR, Wide & Deep, FM, FFM, DeepFM, NFM, Deep & Cross, xDeepFM, DIN, DIEN, DSIN

基于标签的推荐系统:基于流行度的推荐,热门商品可降权

点评网站,如:大众点评、豆瓣,用户给某个商品打分,系统会自动提示一些标签,此时我们可以设计的推荐算法及策略有哪些?

  • (1) 给用户u推荐整个系统最热门的标签;

  • (2) 给用户u推荐物品i上最热门的标签;

  • (3) 给用户u推荐他自己经常使用的标签;

  • (4) 将方法2和3进行加权融合,生成最终的标签推荐结果。

  • SVD:

    • FunkSVD:
    • BiasSVD:
    • SVD++
  • 因子分解机:FM

  • 协同过滤

  • 深度学习(tensorflow 2.x) wide & deep

deepfm

NFM

模型效果表 image

About

build the ResSys with FunkSVD, FM, itemCF/UserCF, wide&deep with residual net, deepFM with residual net and etc. I try to collect all the algorithm as soon as possible.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published