-
Notifications
You must be signed in to change notification settings - Fork 400
进阶文档‐Fast API调用
wuziheng edited this page Sep 26, 2023
·
8 revisions
启动Webui自带的fastapi需要在启动时加入--api。
python launch.py --api
其它参数按照自己的情况配置即可。此时会启动Webui自带的fastapi。
创建post_train.py,填入下面的代码,其中http://0.0.0.0:7860
根据实际情况进行修改,需要填入服务器的ip。
import base64
import json
import os
import sys
from glob import glob
import cv2
import numpy as np
import requests
def decode_image_from_base64jpeg(base64_image):
image_bytes = base64.b64decode(base64_image)
np_arr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
return image
def post(encoded_images):
datas = json.dumps({
"user_id" : "your_user_id",
"sd_model_checkpoint" : "Chilloutmix-Ni-pruned-fp16-fix.safetensors",
"resolution" : 512,
"val_and_checkpointing_steps" : 100,
"max_train_steps" : 800,
"steps_per_photos" : 200,
"train_batch_size" : 1,
"gradient_accumulation_steps" : 4,
"dataloader_num_workers" : 16,
"learning_rate" : 1e-4,
"rank" : 64,
"network_alpha" : 64,
"instance_images" : encoded_images,
})
r = requests.post('http://0.0.0.0:7860/easyphoto/easyphoto_train_forward', data=datas, timeout=1500)
data = r.content.decode('utf-8')
return data
if __name__ == '__main__':
img_dir = sys.argv[1]
img_list = glob(os.path.join(img_dir, "*.jpg")) + glob(os.path.join(img_dir, "*.JPG"))
encoded_images = []
for idx, img_path in enumerate(img_list):
with open(img_path, 'rb') as f:
encoded_image = base64.b64encode(f.read()).decode('utf-8')
encoded_images.append(encoded_image)
outputs = post(encoded_images)
outputs = json.loads(outputs)
print(outputs)
然后使用如下sh代码进行api调用,your_data_dir是存放训练图片的路径,是一个文件夹:
python post_train.py your_data_dir
创建post_infer.py,填入下面的代码,其中http://0.0.0.0:7860
根据实际情况进行修改,需要填入服务器的ip。
import base64
import json
import os
import sys
from glob import glob
import cv2
import numpy as np
import requests
def decode_image_from_base64jpeg(base64_image):
image_bytes = base64.b64decode(base64_image)
np_arr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
return image
def post(encoded_image):
datas = json.dumps({
"user_ids" : ["your_user_id"],
"sd_model_checkpoint" : "Chilloutmix-Ni-pruned-fp16-fix.safetensors",
"init_image" : encoded_image,
"first_diffusion_steps" : 50,
"first_denoising_strength" : 0.45,
"second_diffusion_steps" : 20,
"second_denoising_strength" : 0.35,
"seed" : 12345,
"crop_face_preprocess" : True,
"before_face_fusion_ratio" : 0.5,
"after_face_fusion_ratio" : 0.5,
"apply_face_fusion_before" : True,
"apply_face_fusion_after" : True,
"color_shift_middle" : True,
"color_shift_last" : True,
"super_resolution" : True,
"background_restore" : False,
"tabs" : 1
})
r = requests.post('http://0.0.0.0:7860/easyphoto/easyphoto_infer_forward', data=datas, timeout=1500)
data = r.content.decode('utf-8')
return data
if __name__ == '__main__':
img_dir = sys.argv[1]
img_list = glob(os.path.join(img_dir, "*.jpg")) + glob(os.path.join(img_dir, "*.JPG"))
encoded_images = []
for idx, img_path in enumerate(img_list):
with open(img_path, 'rb') as f:
encoded_image = base64.b64encode(f.read()).decode('utf-8')
outputs = post(encoded_image)
outputs = json.loads(outputs)
image = decode_image_from_base64jpeg(outputs["outputs"][0])
cv2.imwrite(str(idx) + ".jpg", image)
然后使用如下sh代码进行api调用,your_data_dir是存放模板图片的路径,是一个文件夹:
python post_infer.py your_data_dir
创建post_infer.py,填入下面的代码,其中http://0.0.0.0:7860
根据实际情况进行修改,需要填入服务器的ip。
import base64
import json
import os
import sys
from glob import glob
import cv2
import numpy as np
import requests
def decode_image_from_base64jpeg(base64_image):
image_bytes = base64.b64decode(base64_image)
np_arr = np.frombuffer(image_bytes, np.uint8)
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
return image
def post(encoded_image):
datas = json.dumps({
"user_ids" : ["your_user_id"],
"sd_model_checkpoint" : "Chilloutmix-Ni-pruned-fp16-fix.safetensors",
"init_image" : encoded_image,
"first_diffusion_steps" : 50,
"first_denoising_strength" : 0.45,
"second_diffusion_steps" : 20,
"second_denoising_strength" : 0.35,
"seed" : 12345,
"crop_face_preprocess" : True,
"before_face_fusion_ratio" : 0.5,
"after_face_fusion_ratio" : 0.5,
"apply_face_fusion_before" : True,
"apply_face_fusion_after" : True,
"color_shift_middle" : True,
"color_shift_last" : True,
"super_resolution" : True,
"background_restore" : False,
"sd_xl_input_prompt" : "upper-body, look at viewer, one twenty years old girl, wear white shit, standing, in the garden, daytime, f32",
"sd_xl_resolution" : "(1024, 1024)",
"tabs" : 3,
"seed" : -1,
})
r = requests.post('http://0.0.0.0:7860/easyphoto/easyphoto_infer_forward', data=datas, timeout=1500)
data = r.content.decode('utf-8')
return data
if __name__ == '__main__':
img_path = sys.argv[1]
if 1:
with open(img_path, 'rb') as f:
encoded_image = base64.b64encode(f.read()).decode('utf-8')
outputs = post(encoded_image)
outputs = json.loads(outputs)
image = decode_image_from_base64jpeg(outputs["outputs"][0])
然后使用如下sh代码进行api调用,your_data_dir是存放模板图片的路径,是一个文件夹:
python post_infer.py input_image_path
也可以不使用任何垫图,直接传入 "init_image" : None, 也可以生成。