-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9eedf52
commit 6ccd6c8
Showing
1 changed file
with
78 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
from main import * | ||
import shap | ||
import pandas as pd | ||
from torch.autograd import Variable | ||
import matplotlib.pyplot as plt | ||
import os | ||
|
||
|
||
# Load data | ||
df_train = pd.read_csv('../gnn/data/simulation2/swedbank/train/nodes.csv') | ||
df_test = pd.read_csv('../gnn/data/simulation2/swedbank/test/nodes.csv') | ||
|
||
|
||
# Extract features and labels (converting to numpy arrays) | ||
features_train = df_train.drop('is_sar', axis=1).values | ||
labels_train = df_train['is_sar'].values | ||
features_test = df_test.drop('is_sar', axis=1).values | ||
labels_test = df_test['is_sar'].values | ||
|
||
|
||
# Convert to pytorch tensors | ||
features_train_tensor = torch.FloatTensor(features_train) | ||
labels_train_tensor = torch.FloatTensor(labels_train) | ||
features_test_tensor = torch.FloatTensor(features_test) | ||
labels_test_tensor = torch.FloatTensor(labels_test) | ||
|
||
|
||
# Load or train a logistic regression model | ||
if os.path.exists('./models/model_logreg.pt'): | ||
print('Using existing trained model.') | ||
model_logreg = torch.load('./models/model_logreg.pt') | ||
model_logreg.eval() | ||
else: | ||
print('Training model from scratch.') | ||
model_logreg = train_logistic_regressor() | ||
torch.save(model_logreg,'./models/model_logreg.pt') | ||
|
||
|
||
# Move all data and model to GPU | ||
device = torch.device('cuda:0') | ||
print('Device: {}'.format(device)) | ||
features_train_tensor = features_train_tensor.to(device) | ||
labels_train_tensor = labels_train_tensor.to(device) | ||
features_test_tensor = features_test_tensor.to(device) | ||
labels_test_tensor = labels_test_tensor.to(device) | ||
model_logreg = model_logreg.to(device) | ||
|
||
|
||
# --- Calculate SHAP values --- | ||
# Get features | ||
train_features_df = df_train.drop('is_sar', axis = 1) # pandas dataframe | ||
test_features_df = df_test.drop('is_sar', axis = 1) # pandas dataframe | ||
|
||
# Define function to wrap model to transform data to tensor | ||
model_logreg.to(torch.device('cpu')) | ||
f = lambda x: model_logreg( Variable( torch.from_numpy(x) ) ).detach().numpy() | ||
|
||
# Convert my pandas dataframe to numpy | ||
data = test_features_df.to_numpy(dtype=np.float32) | ||
|
||
# The explainer doesn't like tensors, hence the f function | ||
explainer = shap.KernelExplainer(f, data[0:100]) | ||
|
||
# Get the shap values from my test data | ||
shap_values = explainer.shap_values(data[0:100]) | ||
|
||
# Enable the plots in jupyter | ||
#shap.initjs() | ||
|
||
feature_names = test_features_df.columns | ||
# Plots | ||
#shap.force_plot(explainer.expected_value, shap_values[0], feature_names) | ||
#shap.dependence_plot("b1_price_avg", shap_values[0], data, feature_names) | ||
shap.summary_plot(shap_values[0], data[0:100], feature_names, show=True) | ||
plt.savefig('shap_values.png') | ||
# shap.plots.waterfall(shap_values[0]) | ||
# plt.savefig('shap_waterfallplot.png') | ||
plt.show() |