A Julia package for computing algebraic dependencies among exponential sequences. Let r_1,...,r_s
be algebraic numbers. We can compute a basis for the ideal I
containing all algebraic dependencies among r_1^n,...,r_s^n
, i.e. for every p
in I
we have p(r_1^n,...,r_s^n) = 0
for all natural numbers n
.
julia> @deps 2 1/2
1-element Array{Expr,1}:
:(v1 * v2 - 1)
julia> @deps (1-sqrt(5))/2 (1+sqrt(5))/2
1-element Array{Expr,1}:
:(v1 ^ 2 * v2 ^ 2 - 1)
M. Kauers, B. Zimmermann. Computing the algebraic relations of C-finite sequences and multisequences. J. Symb. Comput. 43 (2008): 787-803.