Skip to content

Commit

Permalink
Merge pull request #708 from arijitde92/main
Browse files Browse the repository at this point in the history
CVD Dataset Analysis
  • Loading branch information
abhisheks008 authored Jul 14, 2024
2 parents 59e975f + d247401 commit 6d2d3bc
Show file tree
Hide file tree
Showing 11 changed files with 550 additions and 0 deletions.
400 changes: 400 additions & 0 deletions CVD Dataset Analysis/Dataset/Balanced_Dataset_Modif.csv

Large diffs are not rendered by default.

7 changes: 7 additions & 0 deletions CVD Dataset Analysis/Dataset/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@

## DATASET

Dataset can be found at below link.

https://www.kaggle.com/datasets/sanazkhanjani/heart-diseases-dataset

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added CVD Dataset Analysis/Images/results.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added CVD Dataset Analysis/Images/top5_pos_features.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
136 changes: 136 additions & 0 deletions CVD Dataset Analysis/Model/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
**Cardio Vascular Dataset Analysis**

**GOAL**

Implementation of different algorithms like logistic regression, SVM, Naive Bayes, Random Forest, XGBoost, and Multi Layer Perceptron to see which gives better accuracy.

**DATASET**

The dataset used in this project is related to cardiovascular diseases and contains various features such as age, gender, cholesterol levels, and more.

**DESCRIPTION**

The main aim of the project is to use multiple algorithms to implement models and compare their performance to determine the best-fitted algorithm by checking the accuracy score.

**WORK DONE**

* Analyzed the data to find insights such as correlation and missing values.
* Plotted different visualizations to understand the data distribution and relationships.
* Trained models using the following algorithms:
* Logistic Regression
* SVM
* Naive Bayes
* Random Forest
* XGBoost
* Multi Layer Perceptron
* Evaluated the models based on accuracy, precision, recall, F1 score, and confusion matrix.
* Identified that XGBoost performed the best with high accuracy.

**MODELS USED**

1. **Logistic Regression:** A statistical model that in its basic form uses a logistic function to model a binary dependent variable.
2. **SVM:** Support Vector Machine performs well on classification problems when the dataset is not too large. It can also be used for regression tasks.
3. **Naive Bayes:** A probabilistic classifier based on Bayes' Theorem with strong independence assumptions between the features.
4. **Random Forest:** Provides higher accuracy through cross-validation. It handles missing values and maintains accuracy with large datasets.
5. **XGBoost:** A library for developing fast and high-performance gradient boosting tree models. It achieves the best performance on a range of difficult machine learning tasks.
6. **Multi Layer Perceptron:** MLPClassifier used to train a Multi Layer Perceptron for classification tasks.

**LIBRARIES NEEDED**

* numpy
* pandas
* matplotlib
* seaborn
* scikit-learn
* xgboost

**EDA RESULTS**
<h4>Column Information</h4>
<pre>
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 sex (F=0,M=1) 399 non-null int64
1 age 399 non-null int64
2 Family history of heart disease 399 non-null int64
3 History of heart disease 399 non-null int64
4 echotype-mass 399 non-null int64
5 echotype-myxoma 399 non-null int64
6 echotype-thrombose 399 non-null int64
7 echotype-fibroma 399 non-null int64
8 echotype-vegetation 399 non-null int64
9 echotype-papillary fibroelastoma 399 non-null int64
10 echomasstype 399 non-null int64
11 echoposition 399 non-null int64
12 echomalignancy 399 non-null int64
13 echosize 399 non-null int64
14 echonumbers 399 non-null int64
15 echoconsistency 399 non-null int64
16 surgeryposition 399 non-null int64
17 surgerysize 399 non-null int64
18 surgerynumbers 399 non-null int64
19 pathotype-myxoma 399 non-null int64
20 pathotype-thrombose 399 non-null int64
21 pathotype-fibroma 399 non-null int64
22 pathotype-sarcoma 399 non-null int64
23 pathotype-carci0ma 399 non-null int64
24 pathotype-lypoma 399 non-null int64
25 pathotype-vegetation 399 non-null int64
26 pathotype-endocarditis 399 non-null int64
27 pathotype-NBTE 399 non-null int64
28 pathotype-papillary fibroelastoma 399 non-null int64
29 pathomalignancy 399 non-null int64
</pre>

<!-- <h4>Statistical Information</h4>
<pre>
sex (F=0,M=1) age Family history of heart disease History of heart disease echotype-mass echotype-myxoma echotype-thrombose echotype-fibroma echotype-vegetation echotype-papillary fibroelastoma ... pathotype-thrombose pathotype-fibroma pathotype-sarcoma pathotype-carci0ma pathotype-lypoma pathotype-vegetation pathotype-endocarditis pathotype-NBTE pathotype-papillary fibroelastoma pathomalignancy
count 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 ... 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000 399.000000
mean 0.448622 50.854637 0.170426 0.355890 0.546366 0.195489 0.125313 0.030075 0.022556 0.080201 ... 0.095238 0.067669 0.185464 0.095238 0.017544 0.037594 0.025063 0.012531 0.075188 0.373434
std 0.497978 23.437052 0.376479 0.479383 0.498471 0.397074 0.331489 0.171009 0.148671 0.271944 ... 0.293912 0.251493 0.389161 0.293912 0.131451 0.190451 0.156512 0.111379 0.264025 0.484323
min 0.000000 3.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 37.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 0.000000 51.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 1.000000 70.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
max 1.000000 91.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
</pre>
-->

**PLOTS**

<p>
Correlation Matrix<br>
<img src="../Images/correlation_matrix.png" alt="Correlation Matrix" title="Correlation Matrix" style="width:45%" />
</p>
<p>
Univariate Analysis<br>
<img src="../Images/univariate_analysis.png" alt="Univariate Analysis" title="Univariate Analysis" style="width:45%" />
</p>

<p>
Target class counts<br>
<img src="../Images/target_class_counts.png" alt="Target class counts" title="Target class counts" style="width:45%" />
</p>

<p>
Top 5 positively correlated features<br>
<img src="../Images/top5_pos_features.png" alt="Top 5 positive features" title="Top 5 positive features" style="width:45%" />
<br>
Top 5 negatively correlated features<br>
<img src="../Images/top5_neg_features.png" alt="Top 5 negative features" title="Top 5 negative features" style="width:45%" />
</p>

**RESULTS**
<img src="../Images/results.png" alt="Results of the six models" title="Results of the six models" />

**CONCLUSION**

We investigated the dataset, checking for missing values, visualizing the features, and understanding the relationships between different features. We trained and evaluated multiple predictive models, including Logistic Regression (LR), SVM, Naive Bayes (NB), Random Forest, XGBoost and Multi Layer Perceptron (MLP). We found that LR, Random Forest, XGBoost and MLP all achieved the highest accuracy on the test dataset.
We also concluded that age and cholesterol levels are significant features in predicting cardiovascular diseases.

**CONTRIBUTION BY**

*Arijit De*


[![LinkedIn](https://img.shields.io/badge/linkedin-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/de-arijit/)
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/arijitde92)

Large diffs are not rendered by default.

6 changes: 6 additions & 0 deletions CVD Dataset Analysis/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
numpy
pandas
matplotlib
scikit-learn
xgboost
seaborn

0 comments on commit 6d2d3bc

Please sign in to comment.