Machine learning algorithms is a master's course in algorithms and computations presented at the University of Tehran.
- Ali Fahim
👨🎓 Teacher Assistant:
- Asef Afsahi (👨🍳)
- Hossein Tavakolian
- Zahra Boreiri
- Parsa Hadadian
- Mohammad Jalai
- Mohammad Hatami
Data Mining and Analysis
- 1 Data Matrix
- 2 Attributes
- 3 Data: Algebraic and Geometric View
- 4 Data: Probabilistic View
Numeric Attributes
- 1 Univariate Analysis
- 2 Bivariate Analysis
- 3 Multivariate Analysis
- 4 Data Normalization
- 5 Normal Distribution
Categorical Attributes
- 1 Univariate Analysis
- 2 Bivariate Analysis
- 3 Multivariate Analysis
- 4 Data Normalization
- 5 Normal Distribution
Kernel Methods
- 1 Kernel Matrix
- 2 Vector Kernels
- 3 Basic Kernel Operations in Feature Space
- 4 Kernels for Complex Objects
- 5 Normal Distribution
Dimensionality Reduction
- 1 Background
- 2 Principal Component Analysis
- 3 Kernel Principal Component Analysis
- 4 Singular Value Decomposition
Representative-based Clustering
- 1 K-means Algorithm
- 2 Kernel K-means
- 3 Expectation-Maximization Clustering
Hierarchical Clustering
- 1 Preliminaries
- 2 Agglomerative Hierarchical Clustering
Density-based Clustering
- 1 The DBSCAN Algorithm
- 2 Kernel Density Estimation
- 3 Density-based Clustering: DENCLUE
Clustering Validation
- 1 External Measures
- 2 Internal Measure
- 3 Relative Measure
Clustering Validation
- 1 External Measures
- 2 Internal Measure
- 3 Relative Measure
Probabilistic Classification
- 1 Bayes Classifier
- 2 Naive Bayes Classifier
- 3 K Nearest Neighbors Classifier
Decision Tree Classifier
- 1 Decision Trees
- 2 Decision Tree Algorithm
Linear Discriminant Analysis
- 1 Optimal Linear Discriminant
- 2 Kernel Discriminant Analysis
Support Vector Machinesn
- 1 Support Vectors and Margins
- 2 SVM: Linear and Separable Case
- 3 Soft Margin SVM: Linear and Nonseparable Case
- 4 Kernel SVM: Nonlinear Case
- 5 SVM Training: Stochastic Gradient Ascent
Classification Assessment
- 1 Classification Performance Measures
- 2 Classifier Evaluation
- 3 Bias-Variance Decomposition
- 4 Ensemble Classifiers
Linear Regression
- 1 Linear Regression Model
- 2 Bivariate Regression
- 3 Multiple Regression
- 4 Ridge Regression
- 5 Kernel Regression
- 6 L1 Regression: Lasso
Logistic Regression
- 1 Binary Logistic Regression
- 2 Multiclass Logistic Regression
Neural Networks
- 1 Artificial Neuron: Activation Functions
- 2 Neural Networks: Regression and Classification
- 3 Neural Networks: Regression and Classification
- 4 Deep Multilayer Perceptrons
Deep Learning
- 1 Recurrent Neural Networks
- 2 Gated RNNS: Long Short-Term Memory Networks
- 3 Multiple Regression
- 4 Convolutional Neural Networks
- 5 Convolutional Neural Networks
Regression Evaluation
- 1 Univariate Regression
- 2 Multiple Regression