Skip to content

Machine learning algorithms is a master's course in algorithms and computations presented at the University of Tehran.

Notifications You must be signed in to change notification settings

a-fahim/Machine-Learning-Algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Algorithms

YouTube PyTorch



Machine learning algorithms is a master's course in algorithms and computations presented at the University of Tehran.

Teacher:

  • Ali Fahim
👨‍🎓 Teacher Assistant:
  • Asef Afsahi (👨‍🍳)
  • Hossein Tavakolian
  • Zahra Boreiri
  • Parsa Hadadian
  • Mohammad Jalai
  • Mohammad Hatami

📃 sylabes:

PART I. DATA ANALYSIS FOUNDATIONS

Data Mining and Analysis
  • 1 Data Matrix
  • 2 Attributes
  • 3 Data: Algebraic and Geometric View
  • 4 Data: Probabilistic View
Numeric Attributes
  • 1 Univariate Analysis
  • 2 Bivariate Analysis
  • 3 Multivariate Analysis
  • 4 Data Normalization
  • 5 Normal Distribution
Categorical Attributes
  • 1 Univariate Analysis
  • 2 Bivariate Analysis
  • 3 Multivariate Analysis
  • 4 Data Normalization
  • 5 Normal Distribution
Kernel Methods
  • 1 Kernel Matrix
  • 2 Vector Kernels
  • 3 Basic Kernel Operations in Feature Space
  • 4 Kernels for Complex Objects
  • 5 Normal Distribution
Dimensionality Reduction
  • 1 Background
  • 2 Principal Component Analysis
  • 3 Kernel Principal Component Analysis
  • 4 Singular Value Decomposition

PART II. CLUSTERING

Representative-based Clustering
  • 1 K-means Algorithm
  • 2 Kernel K-means
  • 3 Expectation-Maximization Clustering
Hierarchical Clustering
  • 1 Preliminaries
  • 2 Agglomerative Hierarchical Clustering
Density-based Clustering
  • 1 The DBSCAN Algorithm
  • 2 Kernel Density Estimation
  • 3 Density-based Clustering: DENCLUE
Clustering Validation
  • 1 External Measures
  • 2 Internal Measure
  • 3 Relative Measure

PART III. CLASSIFICATION

Clustering Validation
  • 1 External Measures
  • 2 Internal Measure
  • 3 Relative Measure
Probabilistic Classification
  • 1 Bayes Classifier
  • 2 Naive Bayes Classifier
  • 3 K Nearest Neighbors Classifier
Decision Tree Classifier
  • 1 Decision Trees
  • 2 Decision Tree Algorithm
Linear Discriminant Analysis
  • 1 Optimal Linear Discriminant
  • 2 Kernel Discriminant Analysis
Support Vector Machinesn
  • 1 Support Vectors and Margins
  • 2 SVM: Linear and Separable Case
  • 3 Soft Margin SVM: Linear and Nonseparable Case
  • 4 Kernel SVM: Nonlinear Case
  • 5 SVM Training: Stochastic Gradient Ascent
Classification Assessment
  • 1 Classification Performance Measures
  • 2 Classifier Evaluation
  • 3 Bias-Variance Decomposition
  • 4 Ensemble Classifiers

PART IV. REGRESSION

Linear Regression
  • 1 Linear Regression Model
  • 2 Bivariate Regression
  • 3 Multiple Regression
  • 4 Ridge Regression
  • 5 Kernel Regression
  • 6 L1 Regression: Lasso
Logistic Regression
  • 1 Binary Logistic Regression
  • 2 Multiclass Logistic Regression
Neural Networks
  • 1 Artificial Neuron: Activation Functions
  • 2 Neural Networks: Regression and Classification
  • 3 Neural Networks: Regression and Classification
  • 4 Deep Multilayer Perceptrons
Deep Learning
  • 1 Recurrent Neural Networks
  • 2 Gated RNNS: Long Short-Term Memory Networks
  • 3 Multiple Regression
  • 4 Convolutional Neural Networks
  • 5 Convolutional Neural Networks
Regression Evaluation
  • 1 Univariate Regression
  • 2 Multiple Regression

License

Licence


About

Machine learning algorithms is a master's course in algorithms and computations presented at the University of Tehran.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published