Skip to content

Commit

Permalink
Site updated: 05/28/2024 23:47:07
Browse files Browse the repository at this point in the history
  • Loading branch information
Zhaopudark committed May 28, 2024
1 parent 48a0645 commit b8402b1
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 22 deletions.
9 changes: 5 additions & 4 deletions source/_posts/data_dividing.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ tags:
- Python
title: Discuss the mathematics of apportionment when splitting the
machine learning dataset into several parts by proportions
updated: "2024-05-27 14:16:41"
updated: "2024-05-28 23:45:58"
---

This article discusses an operation that originated in machine learning,
Expand Down Expand Up @@ -1319,7 +1319,8 @@ and analysis step by step, until the conclusion is reached.
- $h\in \mathbb{Z}^+$
- If $h \ge 2$,
- $\exists s,t \in \{1,2,\ldots,h\}, s < t, i_s \in G_s, i_t\in G_t, x_{i_s} < x_{i_t}$,
- $\forall b \in B_3$, \$ b ^n,~\_{i=1}^n b_i = m\$, and
- $\forall b \in B_3$,
$b \in \mathbb{Z}^n,~\sum_{i=1}^n b_i = m$, and
$b_{i_s} < b_{i_t}$.
- If $h=1$, $B_3 = \emptyset$.
- If $h \ge 2$.
Expand Down Expand Up @@ -1412,7 +1413,7 @@ and analysis step by step, until the conclusion is reached.
$D^{*'}_b = \complement_{D^{'}_b}B_1 \cap \complement_{D^{'}_b}B_2 \cap \complement_{D^{'}_b}B_3$
- If $m > 0$, there will be
$\exists h^{'} \in \{1,2,\ldots,h\} \sum_{i=1}^{h^{'}-1}g_i \le m < \sum_{i=1}^{h^{'}}g_i$.
- If \$\_{i=1}<sup>{h</sup>{’}-1}g_i = m \$,
- If $\sum_{i=1}^{h^{'}-1}g_i = m$,
- then
$\forall i \in G_1 \cup G_2 \cup \ldots \cup G_{h^{'}-1}, b_{i}=1$.
- and,
Expand Down Expand Up @@ -1588,7 +1589,7 @@ and analysis step by step, until the conclusion is reached.
- So, $D^{*}_b=\{\theta\}$, which is a single element set.
- If $m > 0$, there will be
$\exists h^{'} \in \{1,2,\ldots,h\} \sum_{i=1}^{h^{'}-1}g_i \le m < \sum_{i=1}^{h^{'}}g_i$.
- If \$\_{i=1}<sup>{h</sup>{’}-1}g_i = m \$,
- If $\sum_{i=1}^{h^{'}-1}g_i = m$,
- then
$\forall i \in G_1 \cup G_2 \cup \ldots \cup G_{h^{'}-1}, b_{i}=1$.
- and,
Expand Down
31 changes: 15 additions & 16 deletions source/_posts/【算法分析】round函数的值域分析.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ tags:
- Mathematics
- Algorithm
title: Analyses of round function
updated: "2024-05-23 01:02:52"
updated: "2024-05-28 23:44:04"
---

This article does a mathematical abstraction of the
Expand Down Expand Up @@ -169,8 +169,8 @@ which is base on $round(\cdot) \mathbb{R}\rightarrow \mathbb{Z}$.
- Define
$f(r,n,N):\{\mathbb{R}^n,\mathbb{Z}^+,\mathbb{Z}^+\}\rightarrow\{\mathbb{Z}\}$
as:
- $\forall (r,n,N) \in D_{r,n,N}$, there is \$ f(r,n,N)=\[*{i=1}^n
round(r*{i}N)\]-N\$
- $\forall (r,n,N) \in D_{r,n,N}$, there is
$f(r,n,N)=[\sum_{i=1}^n round(r_{i}N)]-N$
- $\forall n \in \mathbb{Z}^+$, define
$D_{r,N}=\{(r,N)|N \in \mathbb{Z}^+, N\ge n,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$.
- $\forall n \in \mathbb{Z}^+$, define the function $f(r,n,N)$’s value
Expand Down Expand Up @@ -230,8 +230,8 @@ the $0$ is also necessary.
- $D_{r,n,N}=\{(r,n,N)|n \in\mathbb{Z}^+,N \in\mathbb{Z}^+, n \le N,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$
- $f(r,n,N):\{\mathbb{R}^n,\mathbb{Z}^+,\mathbb{Z}^+\}\rightarrow\{\mathbb{Z}\}$
as:
- $\forall (r,n,N) \in D_{r,n,N}$, there is \$ f(r,n,N)=\[*{i=1}^n
round(r*{i}N)\]-N\$.
- $\forall (r,n,N) \in D_{r,n,N}$, there is
$f(r,n,N)=[\sum_{i=1}^n round(r_{i}N)]-N$.
- $\forall n \in \mathbb{Z}^+$,
$D_{r,N}=\{(r,N)|N \in \mathbb{Z}^+, N\ge n,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$.
- Question:
Expand Down Expand Up @@ -372,8 +372,8 @@ Take the following steps:
- $D_{r,n,N}=\{(r,n,N)|n \in\mathbb{Z}^+,N \in\mathbb{Z}^+, n \le N,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$
- $f(r,n,N):\{\mathbb{R}^n,\mathbb{Z}^+,\mathbb{Z}^+\}\rightarrow\{\mathbb{Z}\}$
as:
- $\forall (r,n,N) \in D_{r,n,N}$, there is \$ f(r,n,N)=\[*{i=1}^n
round(r*{i}N)\]-N\$.
- $\forall (r,n,N) \in D_{r,n,N}$, there is
$f(r,n,N)=[\sum_{i=1}^n round(r_{i}N)]-N$.
- $\forall n \in \mathbb{Z}^+$,
$D_{r,N}=\{(r,N)|N \in \mathbb{Z}^+, N\ge n,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$.
- Question:
Expand Down Expand Up @@ -575,9 +575,8 @@ Take the following steps:
- $D_{r,n,N}=\{(r,n,N)|n \in\mathbb{Z}^+,N \in\mathbb{Z}^+, n \le N,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$
- $f(r,n,N):\{\mathbb{R}^n,\mathbb{Z}^+,\mathbb{Z}^+\}\rightarrow\{\mathbb{Z}\}$
as:
- $\forall (r,n,N) \in D_{r,n,N}$, there is \$ f(r,n,N)=\[*{i=1}^n
round(r*{i}N)\]-N=\[*{i=1}^n truncate(r*{i}N)\]-N=\[*{i=1}^n
floor(r*{i}N)\]-N\$.
- $\forall (r,n,N) \in D_{r,n,N}$, there is
$f(r,n,N)=[\sum_{i=1}^n round(r_{i}N)]-N=[\sum_{i=1}^n truncate(r_{i}N)]-N=[\sum_{i=1}^n floor(r_{i}N)]-N$.
- $\forall n \in \mathbb{Z}^+$,
$D_{r,N}=\{(r,N)|N \in \mathbb{Z}^+, N\ge n,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$.
- Question:
Expand Down Expand Up @@ -667,17 +666,17 @@ Take the following steps:
## A.4
- Given $round(x)$, where \$x ^+{0},~round(x)=ceil(x)=x\$. Its domain of
definition is restricted to $\mathbb{R}^+\cup\{0\}$ instead of
$\mathbb{R}$, and in this domain, it is equivalent to
- Given $round(x)$, where
$\forall x \in \mathbb{R}^+\cup\{0\},~round(x)=ceil(x)=\lceil x\rceil$.
Its domain of definition is restricted to $\mathbb{R}^+\cup\{0\}$
instead of $\mathbb{R}$, and in this domain, it is equivalent to
$\eqref{round_4}$.
- Define:
- $D_{r,n,N}=\{(r,n,N)|n \in\mathbb{Z}^+,N \in\mathbb{Z}^+, n \le N,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$
- $f(r,n,N):\{\mathbb{R}^n,\mathbb{Z}^+,\mathbb{Z}^+\}\rightarrow\{\mathbb{Z}\}$
as:
- $\forall (r,n,N) \in D_{r,n,N}$, there is \$ f(r,n,N)=\[*{i=1}^n
round(r*{i}N)\]-N=\[*{i=1}^n truncate(r*{i}N)\]-N=\[*{i=1}^n
floor(r*{i}N)\]-N\$.
- $\forall (r,n,N) \in D_{r,n,N}$, there is
$f(r,n,N)=[\sum_{i=1}^n round(r_{i}N)]-N=[\sum_{i=1}^n truncate(r_{i}N)]-N=[\sum_{i=1}^n floor(r_{i}N)]-N$.
- $\forall n \in \mathbb{Z}^+$,
$D_{r,N}=\{(r,N)|N \in \mathbb{Z}^+, N\ge n,r = [r_1,r_2,\ldots,r_n]\in \mathbb{R}_+^n,\|r\|_{1}=1\}$.
- Question:
Expand Down
4 changes: 2 additions & 2 deletions source/sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
https://little-train.com/posts/70807cc5.html
</loc>
<lastmod>
2024-05-27
2024-05-28
</lastmod>
<changefreq>
monthly
Expand All @@ -19,7 +19,7 @@
https://little-train.com/posts/34195fcb.html
</loc>
<lastmod>
2024-05-23
2024-05-28
</lastmod>
<changefreq>
monthly
Expand Down

0 comments on commit b8402b1

Please sign in to comment.