Based on paperwithcode VSR task, this repository contains summary of the state-of-the-art VSR methods.
Model | Published | Code | Year | BI degradation Vid4 Y - 4x (PSNR) |
---|---|---|---|---|
PSRT | NeurIPS22 | PyTorch | 2022 | 28.07 |
RVRT | NeurIPS22 | PyTorch | 2022 | 27.99 |
VRT | arXiv | PyTorch | 2022 | 27.93 |
BasicVSR++ | CVPR22 | PyTorch | 2022 | 27.79 |
RRN-L | arXiv | PyTorch | 2020 | 27.69 |
iSeeBetter | Computational Visual Media | PyTorch | 2020 | 27.43 |
PFNL | ICCV19 | TensorFlow | 2019 | 27.40 |
IconVSR | CVPR21 | PyTorch | 2021 | 27.39 |
ADNLVSR | Neurocomputing | - | 2020 | 27.39 |
EDVR | CVPR19 | PyTorch | 2019 | 27.35 |
VSR-DUF | CVPR18 | TensorFlow | 2018 | 27.31 |
BasicVSR | CVPR21 | PyTorch | 2021 | 27.24 |
RBPN/6-PF | CVPR19 | PyTorch | 2019 | 27.12 |
TDAN | CVPR20 | PyTorch | 2020 | 26.86 |
FRVSR | CVPR18 | - | 2018 | 26.69 |
WDVR | CVPR19 | PyTorch | 2019 | 26.62 |
MDCN | Neurocomputing | - | 2019 | 26.49 |
DDAN | IEEE Transactions on Image Processing | - | 2020 | 26.48 |
SOF-VSR | IEEE Transactions on Image Processing | PyTorch | 2020 | 26.01 |
DRDVSR | ICCV17 | TensorFlow | 2017 | 25.88 |
VESPCN | CVPR17 | - | 2017 | 25.35 |
Bicubic (Baseline) | 23.82 |
- PSRT
- RVRT
- VRT
- BasicVSR++
- RRN-L
- iSeeBetter
- PFNL
- IconVSR
- ADNLVSR
- EDVR
- VSR-DUF
- BasicVSR
- RBPN/6-PF
- TDAN
- FRVSR
- WDVR
- MDCN
- DDAN
- SOF-VSR
- DRDVSR
- VESPCN
Please refer to Dataset.md for more details.
- Shi, Shuwei, et al. "Rethinking alignment in video super-resolution transformers." arXiv preprint arXiv:2207.08494 (2022).
- Liang, Jingyun, et al. "Recurrent Video Restoration Transformer with Guided Deformable Attention." arXiv preprint arXiv:2206.02146 (2022).
- Liang, Jingyun, et al. "Vrt: A video restoration transformer." arXiv preprint arXiv:2201.12288 (2022).
- Chan, Kelvin CK, et al. "BasicVSR++: Improving video super-resolution with enhanced propagation and alignment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- Isobe, Takashi, Fang Zhu, and Shengjin Wang. "Revisiting Temporal Modeling for Video Super-resolution." arXiv preprint arXiv:2008.05765 (2020).
- Chadha, Aman, John Britto, and M. Mani Roja. "iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks." Computational Visual Media (2020): 1-12.
- Yi, Peng, et al. "Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations." Proceedings of the IEEE International Conference on Computer Vision. 2019.
- Chan, Kelvin CK, et al. "BasicVSR: The search for essential components in video super-resolution and beyond." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Sun, Wei, and Yanning Zhang. "Attention-guided Dual Spatial-Temporal Non-local Network for Video Super-Resolution." Neurocomputing (2020).
- Wang, Xintao, et al. "Edvr: Video restoration with enhanced deformable convolutional networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.
- Jo, Younghyun, et al. "Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- Haris, Muhammad, Gregory Shakhnarovich, and Norimichi Ukita. "Recurrent back-projection network for video super-resolution." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
- Tian, Yapeng, et al. "TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
- Sajjadi, Mehdi SM, Raviteja Vemulapalli, and Matthew Brown. "Frame-recurrent video super-resolution." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- Fan, Yuchen, et al. "An Empirical Investigation of Efficient Spatio-Temporal Modeling in Video Restoration." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019.
- Purohit, Kuldeep, Srimanta Mandal, and A. N. Rajagopalan. "Mixed-dense connection networks for image and video super-resolution." Neurocomputing (2019).
- Li, Feng, Huihui Bai, and Yao Zhao. "Learning a Deep Dual Attention Network for Video Super-Resolution." IEEE Transactions on Image Processing 29 (2020): 4474-4488.
- Wang, Longguang, et al. "Deep Video Super-Resolution using HR Optical Flow Estimation." arXiv preprint arXiv:2001.02129 (2020).
- Tao, Xin, et al. "Detail-revealing deep video super-resolution." Proceedings of the IEEE International Conference on Computer Vision. 2017.
- Caballero, Jose, et al. "Real-time video super-resolution with spatio-temporal networks and motion compensation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.