Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sync #75

Merged
merged 5 commits into from
May 20, 2024
Merged

sync #75

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions examples/seld_spatialsoundqa/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# <img src="assets/bat.png" alt="SELD_SpatialSoundQA" width="25" height="25"> SELD_SpatialSoundQA

This repo hosts the code and models of "[BAT: Learning to Reason about Spatial Sounds with Large Language Models](https://arxiv.org/abs/2402.01591)" [ICML 2024 [bib](https://github.com/zszheng147/Spatial-AST#citation)].

Checkout our [demo page](https://zhishengzheng.com/BAT/) and enjoy a QA game with spatial audio.

## Performance and checkpoints
Encoder | Projector | PEFT | LLM
|---|---|---|---|
[Spatial-AST](https://huggingface.co/zhisheng01/Bat/blob/main/spatial-ast.pth) | Q-Former | adapter |[llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)

## Data preparation
You need to prepare the data jsonl in this format. Below is an example.
You can download the SpatialSoundQA dataset from [huggingface](https://huggingface.co/datasets/zhisheng01/SpatialSoundQA).
```
{"audio_id": "eval/audio/YI-HlrcP6Qg4", "reverb_id": "q9vSo1VnCiC/0.npy", "audio_id2": null, "reverb_id2": null, "question_id": 0, "question_type": "CLASSIFICATION", "question": "Enumerate the sound occurrences in the audio clip.", "answer": "accelerating, revving, vroom; car; vehicle"}
...
{"audio_id": "eval/audio/YZX2fVPmUidA", "reverb_id": "q9vSo1VnCiC/32.npy", "audio_id2": "eval/audio/YjNjUU01quLs", "reverb_id2": "q9vSo1VnCiC/31.npy", "question_id": 58, "question_type": "MIXUP_NONBINARY_DISTANCE", "question": "How far away is the sound of the banjo from the sound of the whack, thwack?", "answer": "2m"}
```

## Train a new model
```bash
bash examples/seld_spatialsoundqa/scripts/finetune_spatial-ast_qformer_llama_2_7b.sh
```

## Decoding with checkpoints
```bash
bash examples/seld_spatialsoundqa/scripts/decode_spatial-ast_qformer_llama_2_7b.sh
```


## TODO
- [x] Decode with checkpoints
- [x] Upload SpatialSoundQA dataset
- [ ] Upload pretrained checkpoints
- [ ] Update model performance

## Citation
```
@article{zheng2024bat,
author = {Zheng, Zhisheng and Peng, Puyuan and Ma, Ziyang and Chen, Xie and Choi, Eunsol and Harwath, David},
title = {BAT: Learning to Reason about Spatial Sounds with Large Language Models},
journal = {arXiv preprint arXiv:2402.01591},
year = {2024},
}
```
Binary file added examples/seld_spatialsoundqa/assets/bat.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
19 changes: 19 additions & 0 deletions examples/seld_spatialsoundqa/conf/ds_config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 1,
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-4
}
},
"fp16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu"
}
}
}
152 changes: 152 additions & 0 deletions examples/seld_spatialsoundqa/dataset/spatial_audio_dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
import os
import random
import json
import copy

import numpy as np
import soundfile as sf
from scipy import signal

import torch

from slam_llm.datasets.base_dataset import BaseDataset

def format_prompt(instruction, input=None):
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Based on the audio you've heard, refer to the instruction and provide a response.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
if input is None:
return PROMPT_DICT['prompt_no_input'].format_map({'instruction': instruction})
else:
return PROMPT_DICT["prompt_input"].format_map({'instruction': instruction, 'input': input})


class SpatialAudioDatasetJsonl(BaseDataset):
def __init__(
self,
dataset_config,
tokenizer,
split,
):
super().__init__()
dataset_path = os.path.join(dataset_config['qa_data_root'], dataset_config['stage'], split + '.jsonl')
with open(dataset_path) as f:
self.data = [json.loads(line) for line in f.readlines()]

self.anechoic_data_root = dataset_config['anechoic_data_root'] # which is AudioSet in this case
self.reverb_data_root = dataset_config['reverb_data_root']
self.channel_type = dataset_config['channel_type']

self.ext_audio = dataset_config['ext_audio']
self.max_words = dataset_config['max_words']
self.fix_length_audio = dataset_config.get("fix_length_audio", -1)

self.tokenizer = tokenizer

self.normalize = dataset_config['normalize']
self.inference_mode = dataset_config['inference_mode']

def __len__(self):
return len(self.data)

def __getitem__(self, index):
sample = self.data[index]

audio_path = os.path.join(self.anechoic_data_root, sample['audio_id'] + self.ext_audio)
reverb_path = os.path.join(self.reverb_data_root, self.channel_type, sample['reverb_id'])

if sample['audio_id2'] is not None and sample['reverb_id2'] is not None:
audio_path2 = os.path.join(self.anechoic_data_root, sample['audio_id2'] + self.ext_audio)
reverb_path2 = os.path.join(self.reverb_data_root, self.channel_type, sample['reverb_id2'])
else:
audio_path2 = None
reverb_path2 = None

waveforms = self.load_waveform(audio_path, reverb_path, audio_path2, reverb_path2)

prompt = sample['question']
prompt = format_prompt(prompt, None)
answer = sample['answer']

if not self.inference_mode:
return super().__getitem__((waveforms, None, prompt, answer))
else:
base_sample = super().__getitem__((waveforms, None, prompt, answer))
base_sample.update({
"key": f"{sample['question_type']}-{sample['question_id']}",
"target": sample['answer']
})
return base_sample

@classmethod
def normalize_audio(cls, audio_data, target_dBFS=-14.0):
rms = np.sqrt(np.mean(audio_data**2)) # Calculate the RMS of the audio

if rms == 0: # Avoid division by zero in case of a completely silent audio
return audio_data

current_dBFS = 20 * np.log10(rms) # Convert RMS to dBFS
gain_dB = target_dBFS - current_dBFS # Calculate the required gain in dB
gain_linear = 10 ** (gain_dB / 20) # Convert gain from dB to linear scale
normalized_audio = audio_data * gain_linear # Apply the gain to the audio data
return normalized_audio

@classmethod
def load_waveform(cls, audio_path, reverb_path=None, audio_path2=None, reverb_path2=None, normalize=True):
waveform, sr = sf.read(audio_path)

if len(waveform.shape) > 1:
waveform = waveform[:, 0]
if sr != 32000:
waveform = signal.resample_poly(waveform, 32000, sr)
sr = 32000
if normalize:
waveform = cls.normalize_audio(waveform, -14.0)

waveform = waveform.reshape(1, -1)
if reverb_path is not None:
reverb = np.load(reverb_path)
waveform = signal.fftconvolve(waveform, reverb, mode='full')

waveform = torch.from_numpy(waveform).float()
waveform = cls.padding(waveform, padding_length=10*sr-waveform.shape[1])

if audio_path2 is not None and reverb_path2 is not None:
waveform2, sr2 = sf.read(audio_path2)

if len(waveform2.shape) > 1:
waveform2 = waveform2[:, 0]
if sr2 != 32000:
waveform2 = signal.resample_poly(waveform2, 32000, sr2)
sr2 = 32000
if normalize:
waveform2 = cls.normalize_audio(waveform2, -14.0)

waveform2 = waveform2.reshape(1, -1)
reverb2 = np.load(reverb_path2)
waveform2 = signal.fftconvolve(waveform2, reverb2, mode='full')
waveform2 = torch.from_numpy(waveform2).float()
waveform2 = cls.padding(waveform2, padding_length=10*sr-waveform2.shape[1])

waveform = (waveform + waveform2) / 2
return waveform

def collator(self, samples):
audio = torch.stack([s['audio'] for s in samples])

collated = super().collator(samples)
collated['audio'] = audio

return collated

def get_spatial_audio_dataset(dataset_config, tokenizer, split):
dataset = SpatialAudioDatasetJsonl(dataset_config, tokenizer, split)
return dataset
48 changes: 48 additions & 0 deletions examples/seld_spatialsoundqa/finetune_seld.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import hydra
import logging
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf

from seld_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig, PeftConfig
from slam_llm.pipeline.finetune import main as train

@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
peft_config: PeftConfig = field(default_factory=PeftConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})
ckpt_path: str = field(
default="output/model.pt", metadata={"help": "The path to projector checkpoint"}
)

@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
def to_plain_list(cfg_item):
if isinstance(cfg_item, ListConfig):
return OmegaConf.to_container(cfg_item, resolve=True)
elif isinstance(cfg_item, DictConfig):
return {k: to_plain_list(v) for k, v in cfg_item.items()}
else:
return cfg_item

# kwargs = to_plain_list(cfg)
kwargs = cfg
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())
logging.basicConfig(level=log_level)

if kwargs.get("debug", False):
import pdb;
pdb.set_trace()

train(kwargs)


if __name__ == "__main__":
main_hydra()
53 changes: 53 additions & 0 deletions examples/seld_spatialsoundqa/inference_seld_batch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import hydra
import logging
from dataclasses import dataclass, field
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing import Optional

from slam_llm.pipeline.inference_batch import main as inference
from seld_config import ModelConfig, TrainConfig, DataConfig, LogConfig, FSDPConfig, PeftConfig

@dataclass
class RunConfig:
dataset_config: DataConfig = field(default_factory=DataConfig)
model_config: ModelConfig = field(default_factory=ModelConfig)
train_config: TrainConfig = field(default_factory=TrainConfig)
log_config: LogConfig = field(default_factory=LogConfig)
fsdp_config: FSDPConfig = field(default_factory=FSDPConfig)
peft_config: PeftConfig = field(default_factory=PeftConfig)
debug: bool = field(default=False, metadata={"help": "Use pdb when true"})
metric: str = field(default="acc", metadata={"help": "The metric for evaluation"})
decode_log: str = field(
default="output/decode_log",
metadata={"help": "The prefix for the decode output"},
)
ckpt_path: str = field(
default="output/model.pt", metadata={"help": "The path to projector checkpoint"}
)
peft_ckpt: Optional[str] = field(
default=None,
metadata={
"help": "The path to peft checkpoint, should be a directory including adapter_config.json"
},
)


@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
run_config = RunConfig()
cfg = OmegaConf.merge(run_config, cfg)
# kwargs = to_plain_list(cfg)
log_level = getattr(logging, cfg.get("log_level", "INFO").upper())

logging.basicConfig(level=log_level)

if cfg.get("debug", False):
import pdb

pdb.set_trace()

inference(cfg)


if __name__ == "__main__":
main_hydra()
Loading
Loading