Skip to content

[ICML 2024] Probabilistic Conceptual Explainers (PACE): Trustworthy Conceptual Explanations for Vision Foundation Models

Notifications You must be signed in to change notification settings

Wang-ML-Lab/interpretable-foundation-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 

Repository files navigation

Probabilistic Conceptual Explainers (PACE)
for Vision Foundation Models

This repo contains the code and data for our ICML 2024 paper:

Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
Hengyi Wang, Shiwei Tan, Hao Wang
[Paper] [ICML Website]

More_Random_Samples_Color

More_Random_Samples_Flower

Installation

conda env create -f environment_PACE.yml
conda activate PACE
cd src

Generate the Color Dataset

python generate_data.py

Finetune ViT for the Color Dataset

python main.py --train  --task Color --name ViT-base --num_epochs 5 --lr 1e-3 --require_grad

Train PACE for the Color Dataset

python main.py --train  --task Color --name ViT-PACE --num_epochs 1

Test PACE for the Color Dataset

python main.py  --task Color --name ViT-PACE --num_epochs 1

Reference

@inproceedings{PACE,
  title={Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models},
  author={Hengyi Wang and
          Shiwei Tan and
          Hao Wang},
  booktitle={International Conference on Machine Learning},
  year={2024}
}