Skip to content

VimsLab/scr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deformable Encoder Transformer (DEnT)

Switch to branch three

git switch three

Dataset

Download and extract the pickle dataset from link

wget -O pickle.zip <link>
unzip pickle.zip

Generate positive and negative pairs

cd dent/
python util/util.py

The directory structure should be similar to

- scr
  - dent
    - data
      - positive.txt
      - negative.txt
      - ...
  - pickle
  - yolov5
  - fasterrcnn

Train the pre-training model

cd dent/
# to run with default arguments
python pretrain.py

# to modify arguments
python pretrain.py --root <str> --world_size <int> --resume <bool> --resume_weight <str> --train_folder <str> --val_folder <str> --epochs <int> --folds <int> --cf <int> --batch_size <int>

Train the detection model

cd dent/

# to run with default arguments
python train.py

# to modify arguments
python train.py --root <str> --dataroot <str> --world_size <int> --resume <bool> --resume_weight <str> --pretrain <bool> --pretrain_weights <str> --epochs <int> --nc <int> --r <int> --space <int> --train_batch <int> --val_batch <int>

Run validation directly on the detection model

cd dent/

# to run with default arguments
python validate.py

# to modify arguments
python validate.py --root <str> --dataroot <str> --world_size <int> --weights <str> --nc <int> --r <int> --space <int> --batch <int>

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published