Skip to content

Commit

Permalink
update tsdae example with SentenceTransformerTrainer
Browse files Browse the repository at this point in the history
  • Loading branch information
JINO-ROHIT committed Dec 15, 2024
1 parent 03db339 commit 5a08db8
Showing 1 changed file with 80 additions and 76 deletions.
156 changes: 80 additions & 76 deletions examples/unsupervised_learning/TSDAE/train_tsdae_from_file.py
Original file line number Diff line number Diff line change
@@ -1,83 +1,87 @@
"""
This file loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file.
TSDAE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder.
Usage:
python train_tsdae_from_file.py path/to/sentences.txt
"""

import gzip
import logging
import sys
from datetime import datetime

import tqdm
from torch.utils.data import DataLoader

from sentence_transformers import LoggingHandler, SentenceTransformer, datasets, losses, models

#### Just some code to print debug information to stdout
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
import numpy as np
from datasets import load_dataset
from nltk import word_tokenize
from nltk.tokenize.treebank import TreebankWordDetokenizer

from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
)
#### /print debug information to stdout

# Train Parameters
model_name = "bert-base-uncased"
batch_size = 8

# Input file path (a text file, each line a sentence)
if len(sys.argv) < 2:
print(f"Run this script with: python {sys.argv[0]} path/to/sentences.txt")
exit()

filepath = sys.argv[1]
from sentence_transformers.losses import DenoisingAutoEncoderLoss

# Save path to store our model
output_name = ""
if len(sys.argv) >= 3:
output_name = "-" + sys.argv[2].replace(" ", "_").replace("/", "_").replace("\\", "_")

model_output_path = "output/train_tsdae{}-{}".format(output_name, datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))


################# Read the train corpus #################
train_sentences = []
with (
gzip.open(filepath, "rt", encoding="utf8") if filepath.endswith(".gz") else open(filepath, encoding="utf8") as fIn
):
for line in tqdm.tqdm(fIn, desc="Read file"):
line = line.strip()
if len(line) >= 10:
train_sentences.append(line)


logging.info(f"{len(train_sentences)} train sentences")
# 1. Load a model to finetune with 2. (Optional) model card data
model = SentenceTransformer(
"bert-base-cased",
)

################# Initialize an SBERT model #################
# 3. Load a dataset to finetune on
dataset = load_dataset("sentence-transformers/all-nli", "triplet")
train_dataset = dataset["train"].select_columns(["anchor"]).select(range(100_000))
eval_dataset = dataset["dev"].select_columns(["anchor"])
test_dataset = dataset["test"].select_columns(["anchor"])
# Now we have 3 datasets, each with one column of text (called "anchor", but the name doesn't matter)
# Now we need to convert the dataset into 2 columns: (damaged_sentence, original_sentence), see https://sbert.net/docs/sentence_transformer/loss_overview.html

def noise_fn(text, del_ratio=0.6):
words = word_tokenize(text)
n = len(words)
if n == 0:
return text

keep_or_not = np.random.rand(n) > del_ratio
if sum(keep_or_not) == 0:
keep_or_not[np.random.choice(n)] = True # guarantee that at least one word remains
words_processed = TreebankWordDetokenizer().detokenize(np.array(words)[keep_or_not])
return {
"damaged": words_processed,
"original": text,
}

train_dataset = train_dataset.map(noise_fn, input_columns="anchor", remove_columns="anchor")
eval_dataset = eval_dataset.map(noise_fn, input_columns="anchor", remove_columns="anchor")
test_dataset = test_dataset.map(noise_fn, input_columns="anchor", remove_columns="anchor")
# Now we have datasets with 2 columns, damaged & original (in that order). The "anchor" column is removed

# 4. Define a loss function
loss = DenoisingAutoEncoderLoss(model, decoder_name_or_path="bert-base-cased", tie_encoder_decoder=True)

# 5. (Optional) Specify training arguments
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir="models/bert-base-cased-nli-tsdae",
# Optional training parameters:
num_train_epochs=1,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
learning_rate=2e-5,
warmup_ratio=0.1,
fp16=True, # Set to False if you get an error that your GPU can't run on FP16
bf16=False, # Set to True if you have a GPU that supports BF16
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
logging_steps=100,
run_name="bert-base-cased-nli-tsdae", # Will be used in W&B if `wandb` is installed
)

word_embedding_model = models.Transformer(model_name)
# Apply **cls** pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), "cls")
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# 6. (Optional) Make an evaluator to evaluate before, during, and after training

################# Train and evaluate the model (it needs about 1 hour for one epoch of AskUbuntu) #################
# We wrap our training sentences in the DenoisingAutoEncoderDataset to add deletion noise on the fly
train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
)
trainer.train()

# 8. Save the trained model
model.save_pretrained("models/bert-base-cased-nli-tsdae/final")

logging.info("Start training")
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=1,
weight_decay=0,
scheduler="constantlr",
optimizer_params={"lr": 3e-5},
show_progress_bar=True,
checkpoint_path=model_output_path,
use_amp=False, # Set to True, if your GPU supports FP16 cores
)
# 9. (Optional) Push it to the Hugging Face Hub
model.push_to_hub("bert-base-cased-nli-tsdae")

0 comments on commit 5a08db8

Please sign in to comment.